Advertisement

Effects of the Solar Cycle on the Earth’s Atmosphere

Abstract

Until recently it was generally doubted that the solar variability in the “11-year sunspot cycle” (SSC), as measured by satellites, has a significant influence on weather and climate variations. But several studies, both empirical and modelling, have in recent years pointed to probable and certain influences. For instance, Labitzke suggested in 1982 that the sun influences the intensity of the north polar vortex (i.e., the Arctic Oscillation (AO)) in the stratosphere in winter, and that the Quasi-Biennial Oscillation (QBO) is needed to identify the solar signal. At present there is no agreement about the mechanism or mechanisms through which the solar variability effect is transmitted to the atmosphere. But there is general agreement that the direct influence of the changes in the UV part of the solar spectrum (6 to 8% between solar maxima and minima) leads to more ozone and warming in the upper stratosphere (around 50 km) in solar maxima. This leads to changes in the vertical gradients and thus in the wind systems, which in turn lead to changes in the vertical propagation of the planetary waves that drive the global circulation. Therefore, the relatively weak, direct radiative forcing of the solar cycle in the stratosphere can lead to a large indirect dynamical response in the lower atmosphere.

Keywords

Solar Cycle Solar Maximum Lower Stratosphere Solar Variability Northern Winter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbot, C. G., F. E. Fowle, and L. B. Aldrich, Annals of the Astrophysical Observatory of the Smithsonian Institution, Vol. III, Washington, 1913Google Scholar
  2. Baldwin, M. P. and coauthors: The quasi-biennial oscillation. Rev. Geophys., 39, 179–229, 2001CrossRefADSGoogle Scholar
  3. Beer, J., W. Mende, and R. Stellmacher: The role of the Sun in climate forcing. Quart. Sci. Rev., 19, 403–415, 2000CrossRefADSGoogle Scholar
  4. Chandra, S., and R. D. McPeters: The solar cycle variation of ozone in the stratosphere inferred from Nimbus 7 and NOAA 11 satellites. J. Geophys. Res., 9, 20665–20671, 1994CrossRefADSGoogle Scholar
  5. Coughlin, K. T., and K. K. Tung: 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method. Advances in Space Research, 34, 323–329, 2004CrossRefADSGoogle Scholar
  6. Cubasch, U., and R. Voss: The influence of total solar irradiance on climate. Space Sci. Rev., 94, 185–198, 2000CrossRefADSGoogle Scholar
  7. De Jager, C., and I. Usoskin: On possible drivers of Sun-induced climate changes. J. Atmos. Sol.-Terr. Phys., 68, 2053–2060, 2006CrossRefADSGoogle Scholar
  8. Fröhlich, C.: Observations of irradiance variations. Space Sci. Rev., 94, 15–24, 2000CrossRefADSGoogle Scholar
  9. Gleisner, H., and P. Thejll: Patterns of tropospheric response to solar variability. Geophys. Res. Lett., 30, (13), 1711, doi: 10.1029/2003GL17129, 2003Google Scholar
  10. Gray, L., E. F. Drysdale, T. J. Dunkerton, and B. Lawrence: Model studies of the interannual variability of the northern hemisphere stratospheric winter circulation: The role of the Quasi-Biennial Oscillation. Q. J. Roy. Met. Soc., 127, 1413–1432, 2001aGoogle Scholar
  11. Gray, L., S. J. Phipps, T. J. Dunkerton, M. P. Baldwin, E. F. Drysdale, and M. R. Allen A data study of the influence of the equatorial upper stratosphere on northern hemisphere stratospheric sudden warmings. Q. J. Roy. Met. Soc., 127, 1985–2003, 2001b Google Scholar
  12. Haigh, J. D.: The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature, 370, 544–546, 1994CrossRefADSGoogle Scholar
  13. Haigh, J. D.: The impact of solar variability on climate. Science, 272, 981–984, 1996CrossRefADSGoogle Scholar
  14. Haigh, J. D.: A GCM study of climate change in response to the 11-year solar cycle. Q. J. Roy. Met. Soc., 125, 871–892, 1999CrossRefADSGoogle Scholar
  15. Holton, J., and H. Tan: The influence of the equatorial Quasi-Biennial Oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208, 1980CrossRefADSGoogle Scholar
  16. Hood, L. L.: Thermal response of the tropical tropopause region to solar ultraviolet variations. Geophys. Res. Lett., 30, No. 23, 2215, doi: 10.1029/2003 GL018364, 2003Google Scholar
  17. Hood, L. L.: Effects of solar UV variability on the stratosphere. – In: Solar variability and its effect on the Earth’s atmosphere and climate system, AGU Monograph Series, Eds. J. Pap et al., American Geophysical Union, Washington D.C., 283–304, 2004Google Scholar
  18. Hood, L. L., and B. Soukharev: Quasi-decadal variability of the tropical lower stratosphere: the role of extratropical wave forcing. J. Atmos. Sci., 60, 2389–2403, 2003CrossRefADSGoogle Scholar
  19. Hood, L. L., J. L. Jirikowic, and J. P. McCormack: Quasi-decadal variability of the stratosphere: influence of long-term solar ultraviolet variations. J. Atmos. Sci., 50, 3941–3958, 1993CrossRefADSGoogle Scholar
  20. Hoyt, D. V., and K. H. Schatten: The role of the Sun in climate change. Oxford University Press, New York, 279 pp, 1997Google Scholar
  21. Kalnay, E., R. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Reynolds, R. Jenne, and J. Joseph: The NCEP/NCAR 40-year re-analysis project. Bull. Am. Meteor. Soc., 77, 437–471, 1996CrossRefADSGoogle Scholar
  22. Kodera, K.: Solar influence on the Indian Ocean Monsoon through dynamical processes. Geophys. Res. Lett.,31, L24209, doi: 10.1029/2004GL 020928, 2004Google Scholar
  23. Kodera, K., and Y. Kuroda: Dynamical response to the solar cycle. J. Geophys. Res., 107, (D24), 4749, doi:10.1029/2002JD002224, 2002Google Scholar
  24. Kodera, K., and K. Yamazaki: Long-term variation of upper stratospheric circulation in the northern hemisphere in December. J. Met. Soc. Japan, 68, 101–105, 1990Google Scholar
  25. Kodera, K., M. Chiba, and K. Shibata: A general circulation model study of the solar and QBO modulation of the stratospheric circulation during northern hemisphere winter. Geophys. Res. Lett., 18, 1209–1212, 1991ADSCrossRefGoogle Scholar
  26. Kristjánsson, J. E., J. Kristiansen, and E. Kaas: Solar activity, cosmic rays, clouds and climate – an update. Advances in Space Res., 34, 407–415, 2004 CrossRefADSGoogle Scholar
  27. Kuroda, Y., and K. Kodera: Effect of solar activity on the polar-night jet oscillation in the northern and southern hemisphere winter. J. Met. Soc. Japan, 80, 973–984, 2002CrossRefGoogle Scholar
  28. Labitzke, K.: On the interannual variability of the middle stratosphere during the northern winters. J. Met. Soc. Japan, 60, 124–139, 1982Google Scholar
  29. Labitzke, K.: Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophys. Res. Lett., 14, 535–537, 1987ADSCrossRefGoogle Scholar
  30. Labitzke, K.: The solar signal of the 11-year sunspot cycle in the stratosphere: Differences between the northern and southern summers. J. Met. Soc. Japan, 80, 963–971, 2002CrossRefGoogle Scholar
  31. Labitzke, K.: The global signal of the 11-year solar cycle in the atmosphere: When do we need the QBO? Meteorolog. Z., 12, 209–216, 2003Google Scholar
  32. Labitzke, K.: On the signal of the 11-year sunspot cycle in the stratosphere over the Antarctic and its modulation by the Quasi-Biennial Oscillation (QBO). Meteorolog. Z., 13, 263–270, 2004aGoogle Scholar
  33. Labitzke, K.: On the signal of the 11-year sunspot cycle in the stratosphere and its modulation by the Quasi-Biennial Oscillation (QBO). J. Atmos. Sol.-Terr. Phys., 66, 1151–1157, 2004bGoogle Scholar
  34. Labitzke, K.: On the solar cycle–QBO relationship: a summary. J. Atmos. Sol.-Terr. Phys., 67/1-2, 45–54, 2005Google Scholar
  35. Labitzke, K. and Collaborators, 2002. The Berlin Stratospheric Data Series; CD from Meteorological Institute, Free University BerlinGoogle Scholar
  36. Labitzke, K., and M. Kunze: Stratospheric temperatures over the Arctic: Comparison of three data sets. Meteorolog. Z., 14, 65–74, 2005CrossRefGoogle Scholar
  37. Labitzke, K., and H. van Loon: The stratosphere in the Southern Hemisphere, Chapter 7, 113–138, in: Meteorology of the Southern Hemisphere, Met. Monogr., 13, No. 35 (C. W. Newton, Ed.), 1972Google Scholar
  38. Labitzke, K., and H. van Loon: Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and stratosphere in the northern hemisphere winter. J. Atmos. Terr. Phys., 50, 197–206, 1988CrossRefADSGoogle Scholar
  39. Labitzke, K., and H. van Loon: The Southern Oscillation. Part IX: The influence of volcanic eruptions on the Southern Oscillation in the stratosphere. J. Clim., 2, 1223–1226, 1989CrossRefADSGoogle Scholar
  40. Labitzke, K., and H. van Loon: Association between the 11-year solar cycle and the atmosphere. Part V: Summer. J. Clim., 5, 240–251, 1992CrossRefADSGoogle Scholar
  41. Labitzke, K., and H. van Loon: Connection between the troposphere and stratosphere on a decadal scale. Tellus, 47 A, 275–286, 1995Google Scholar
  42. Labitzke, K., and H. van Loon: The Stratosphere (Phenomena, History, and Relevance), 179 pp. Springer Verlag, Berlin Heidelberg New York, 1999Google Scholar
  43. Labitzke, K., and H. van Loon: The QBO effect on the global stratosphere in northern winter. J. Atmos. Sol.-Terr. Phys., 62, 621–628, 2000CrossRefADSGoogle Scholar
  44. Labitzke, K., M. Kunze, and S. Brönnigmann: Sunspots, the QBO and the stratosphere in the north polar region – 20 years later. Meteorolog. Z., 15, 335–363, 2006Google Scholar
  45. Langematz, U., A. Clausnitzer, K. Matthes, and M. Kunze: The climate during the Maunder Minimum, simulated with the Freie Universität Berlin climate middle atmosphere model (FUBCMAM). J. Atmos. Sol.-Terr. Phys., 67/1-2, 55–59, 2005Google Scholar
  46. Lean, J. L., G. J. Rottman, H. L. Kyle, T. N. Woods, J. R. Hickey, and L. C. Puga: Detection and parameterisation of variations in solar mid - and near-ultraviolet radiation (200–400 nm). J. Geophys. Res., 102, 29939–29956, 1997CrossRefADSGoogle Scholar
  47. Matthes, K., U. Langematz, L.L. Gray, K. Kodera, and K. Labitzke: Improved 11-year solar signal in the FUB-CMAM. J. Geophys. Res., 109, doi: 10.1029/ 2003 JD 004012, 2004Google Scholar
  48. Matthes, K., Y. Kuroda, K. Kodera, and U. Langematz: Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res., 111, D06108, doi: 10.1019/2005JD 006283, 2006Google Scholar
  49. Naito, Y., and I. Hirota: Interannual variability of the northern winter stratospheric circulation related to the QBO and the solar cycle. J. Met. Soc. Japan, 75, 925–937, 1997Google Scholar
  50. Naujokat, B.: An update of the observed Quasi-Biennial Oscillation of the stratospheric winds over the tropics. J. Atmos. Sci., 43, 1873–1877, 1986CrossRefADSGoogle Scholar
  51. Pawson, S., and B. Naujokat: The cold winters of the middle 1990s in the northern lower stratosphere. J. Geophys. Res., 104, 14,209–14,222, 1999ADSGoogle Scholar
  52. Pittock, A. B.: Solar variability, weather and climate: An update. Q. J. Roy. Met. Soc., 109, 23–55, 1983CrossRefADSGoogle Scholar
  53. Reid, G. C.: Solar variability and the Earth’s climate: Introduction and overview. Space Sci. Rev., 94, 1–11, 2000CrossRefADSGoogle Scholar
  54. Rind, D., and N. K. Balachandran: Modelling the effects of UV variability and the QBO on the troposphere-stratosphere systems. Part II: The troposphere. J. Clim., 8, 2080–2095, 1995CrossRefADSGoogle Scholar
  55. Ruzmaikin, A., and J. Feynman: Solar influence on a major mode of atmospheric variability. J. Geophys. Res., 107 (14), doi: 10.1029/2001JD001239, 2002Google Scholar
  56. Salby, M., and P. Callaghan: Connection between the solar cycle and the QBO: The missing link. J. Clim., 13, 2652–2662, 2000CrossRefADSGoogle Scholar
  57. Salby, M., and P. Callaghan: Evidence of the solar cycle in the general circulation of the stratosphere. J. Clim., 17, 34–46, 2004CrossRefADSGoogle Scholar
  58. Salby, M., and P. Callaghan: Relationship of the quasi-biennial oscillation to the stratospheric signature of the solar cycle. J. Geophys. Res., 111, D06110, doi: 10.1029/2005JD006012, 2006Google Scholar
  59. Shepherd, T. G.: Issues in stratosphere–troposphere coupling. J. Met. Soc. Japan, 80, 769–792, 2002CrossRefGoogle Scholar
  60. Shindell, D., D. Rind, N. K. Balachandran, J. Lean, and J. Lonergan: Solar cycle variability, ozone and climate. Science, 284, 305–308, 1999CrossRefADSGoogle Scholar
  61. Soukharev, B., and L. L. Hood: Possible solar modulation of the equatorial quasi-biennial oscillation: Additional statistical evidence. J. Geophys. Res., 106, 14,855–14,868, 2001CrossRefADSGoogle Scholar
  62. Svensmark, H., and E. Friis-Christensen: Variation of cosmic ray flux and global cloud coverage–a missing link in solar-climate relationships. J. Atmos. Sol.-Terr. Phys., 59, 1225, 1997CrossRefADSGoogle Scholar
  63. Udelhofen, P. M., and R. D. Cess: Cloud cover variations over the United States: An influence of cosmic rays or solar variability? Geophys. Res. Lett., 28, 2617–2620, 2001Google Scholar
  64. van Loon, H., and K. Labitzke: The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the Quasi-Biennial Oscillation. Monthly Weather Rev., 115, 357–369, 1987CrossRefADSGoogle Scholar
  65. van Loon, H., and K. Labitzke: Interannual variations in the stratosphere of the Northern Hemisphere: A description of some probable influences. Interactions Between Global Climate Subsystems, The Legacy of Hann, Geophys. Monograph 75, IUGG 15, 111–122, 1993 Google Scholar
  66. van Loon, H., and K. Labitzke: The 10–12 year atmospheric oscillation. Review article in: Meteorolog. Z., N.F., 3, 259–266, 1994Google Scholar
  67. van Loon, H., and K. Labitzke: The global range of the stratospheric decadal wave. Part I: Its association with the sunspot cycle in summer and in the annual mean, and with the troposphere. J. Clim., 1, 1529–1537, 1998CrossRefGoogle Scholar
  68. van Loon, H., and K. Labitzke: The signal of the 11-year solar cycle in the global stratosphere. J. Atmos. Sol.-Terr. Phys., 61, 53–61, 1999CrossRefADSGoogle Scholar
  69. van Loon, H., and K. Labitzke: The influence of the 11-year solar cycle on the stratosphere below 30km: A review. Space Sci. Rev., 94, 259–278, 2000CrossRefADSGoogle Scholar
  70. van Loon, H., and D. J. Shea: A probable signal of the 11-year solar cycle in the troposphere of the Northern Hemisphere. Geophys. Res. Lett., 26, 2893–2896, 1999CrossRefADSGoogle Scholar
  71. van Loon, H., and D. J. Shea: The global 11–year signal in July–August. Geophys. Res. Lett., 27, 2965–2968, 2000Google Scholar
  72. van Loon, H., G. E. Meehl, and J. M. Arblaster: A decadal solar effect in the tropics in July–August. J. Atmos. Sol.-Terr. Phys., 66, 1767–1778, 2004CrossRefADSGoogle Scholar
  73. van Loon, H., G. A. Meehl, and D. Shea: Coupled air sea response to solar forcing in the Pacific region during northern winter, J. Geophys. Res., 112, D02108, doi: 10.1029/2006JD007378, 2007Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Personalised recommendations