Skip to main content

Second Harmonic Generation Microscopy Versus Third Harmonic Generation Microscopy in Biological Tissues

  • Chapter
  • 789 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 87))

Abstract

Second-harmonic generation (SHG) and third-harmonic generation (THG) processes are both nonlinear processes, related to the interaction of intense light with matters. SHG process describes the generation of light wave that is twice the frequency (with half of the original wavelength) of the original one while THG process describes the generation of light wave that triples the frequency (with one third of the original wavelength) of the original one. The harmonic light wave generation is coupled from the excited nonlinear polarization P NL under intense laser excitation. The interaction of nonlinear polarization P NL and the excitation light is usually related through a nonlinear susceptibility χ, as previously described in Chaps. 7 and 8. SHG and THG can be visualized by considering the interaction in terms of the exchange of photons between various frequencies of the fields. According to this picture, which is previously illustrated in Figs. 8.1 (a), (b), two or three photons of angular frequency ω are destroyed and a photon of angular frequency 2ω (for SHG) or 3ω (for THG) is created in a single quantum-mechanical process. The solid lines in the figure represent the atomic ground states, and the dashed lines represent what are known as virtual levels. These virtual levels are not energy eigenlevels of the atoms, but rather represent the combined energy of one of the energy eigenstates of the atom and one or more photons of the radiation field. Due to its virtual level transition characteristics, harmonic generations are known to leave no energy deposition to the interacted matters, since no real transition involved and the emitted photon energy will be exactly the same as the total absorbed photon energy. This virtual transition characteristic provides the optical “noninvasive” nature desirable for microscopy applications, especially for live biological imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Hellwarth and P. Christensen: Opt. Commun. 12, 318 (1974)

    Article  ADS  Google Scholar 

  2. C. J. R. Sheppard, R. Kompfner, J. Gannaway, and D. Walsh: IEEE J. Quantum Electron. 13, 100 (1977)

    Google Scholar 

  3. G. T. Boyd, Y. R. Shen, and T. W. H¨ansch: Opt. Lett. 11, 97 (1986)

    Article  ADS  Google Scholar 

  4. Y. Uesu, S. Kurimura, and Y. Yamamoto: Appl. Phys. Lett. 66, 2165 (1995)

    Article  ADS  Google Scholar 

  5. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard: Opt. Lett. 23, 1209 (1998)

    Article  ADS  Google Scholar 

  6. We follow the notation of H. A. Haus: Waves and Fields in Optoelectronics (Prentice-Hall, Inc., New Jersey 1984 )

    Google Scholar 

  7. C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars: Appl. Phys. Lett. 77, 2331 (2000)

    Article  ADS  Google Scholar 

  8. C.-K. Sun, S.-W. Chu, S. P. Tai, S. Keller, A. Abare, U. K. Mishra, and S. P. DenBaars: J. Scanning Microscopies 23, 182 (2001)

    Article  Google Scholar 

  9. F. Bresson, F. E. Hernandez, J.-W. Shi, and C.-K. Sun: ‘Electric-field induced second harmonic generation in nematic liquid crystals as a probe for electric field’, In: Proceeding of Optics and Photonics Taiwan ‘01, ed. by (Kaohsiung, Taiwan ROC 2001 ) pp. 713–715

    Google Scholar 

  10. F. Bresson, C.C. Chen, F.E. Hernandez, J.-W. Shi, and C.-K. Sun: submitted to Rev. Sci. Instrum.

    Google Scholar 

  11. S. Fine and W. P. Hansen: Appl. Optics 10, 2350 (197 1)

    Google Scholar 

  12. I. Freund, M. Deutsch, and A. Sprecher: Biophys. J. 50, 693 (1986)

    Article  Google Scholar 

  13. J. Y. Huang, Z. Chen, and A. Lewis: J. Phys. Chem. 93, 3314 (1989)

    Article  Google Scholar 

  14. Y. Guo, P. P. Ho, A. Tirksliunas, F. Liu, and R. R. Alfano: Appl. Optics 35, 6810 (1996)

    Article  ADS  Google Scholar 

  15. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano: Opt. Lett. 22, 1323 (1997)

    Article  ADS  Google Scholar 

  16. O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew: Biophys. J. 65, 672 (1993)

    Article  Google Scholar 

  17. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew: Biophys. J. 77, 3341 (1999)

    Article  Google Scholar 

  18. G. Peleg, A. Lewis, M. Linial, and L. M. Loew: P. Natl. Acad. Sci. USA 96, 6700 (1999)

    Article  ADS  Google Scholar 

  19. L. Moreax, O. Sandre, and J. Mertz: J. Opt. Soc. Am. B 17, 1685 (2000)

    Article  ADS  Google Scholar 

  20. F.-J. Kao, Y.-S. Wang, M.-K. Huang, S. L. Huang, P.-C. Cheng: P. Soc. Photo–Opt. Inst. 4082, 119 (2000)

    Google Scholar 

  21. T. Zhao, Z.-H. Chen, F. Chen, W.-S. Shi, H.-B. Lu, and G.-Z. Yang: Phys. Rev. B 60, 1697 (1999)

    Article  ADS  Google Scholar 

  22. Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora: Appl. Phys. Lett. 78, 3021 (2001)

    Article  ADS  Google Scholar 

  23. V. Berger: Phys. Rev. Lett. 81, 4136 (1998)

    Article  ADS  Google Scholar 

  24. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna: Phys. Rev. Lett. 84, 4345 (2000)

    Article  ADS  Google Scholar 

  25. K. Clays. S. Van Elshocht, M. Chi, E. Lepoudre, and A. Persoons: J. Opt. Soc. Am. B 18, 1474 (2001)

    Article  ADS  Google Scholar 

  26. S.-W. Chu, I-H. Chen, T.-M. Liu, B.-L. Lin, P. C. Cheng, and C.-K. Sun: Opt. Lett. 26, 1909 (2001)

    Article  ADS  Google Scholar 

  27. T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson: J. Scanning Microscopies 23, 249 (2001)

    Article  Google Scholar 

  28. R. R. Anderson and J. A. Parish: J. Invest. Dermat. 77, 13 (198 1)

    Google Scholar 

  29. P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park: J. Microscopy 189, 199 (1998)

    Article  Google Scholar 

  30. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto: Opt. Lett. 21, 1839 (1996)

    Article  ADS  Google Scholar 

  31. D. J. Gallant, B. Bouchet, and P. M. Baldwin: Carbohydrate Polymers 32, 177 (1997)

    Article  Google Scholar 

  32. T. Y. F. Tsang: Phys. Rev. A 52, 4116 (1995)

    Article  ADS  Google Scholar 

  33. R. W. Boyd: Nonlinear Optics ( Academic Press, San Diego, CA 1992 )

    Google Scholar 

  34. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg: Appl. Phys. Lett. 70, 922 (1997)

    Article  ADS  Google Scholar 

  35. M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff: J. Microscopy 191, 266 (1998)

    Article  Google Scholar 

  36. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson: Opt. Express 3, 315 (1998)

    Article  ADS  Google Scholar 

  37. D. Yelin and Y. Silberberg: Opt. Express 5, 169 (1999)

    Article  ADS  Google Scholar 

  38. J. A. Squier and M. Muller: Appl. Optics 38, 5789 (1999)

    Article  ADS  Google Scholar 

  39. D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel: Appl. Phys. Lett. 74, 3107 (1999)

    Article  ADS  Google Scholar 

  40. L. Canioni, S. Rivet, L. Sarger, R. Barille, P. Vacher, and P. Voisin: Opt. Lett. 26, 515 (2001)

    Article  ADS  Google Scholar 

  41. I-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin: ‘Wavelength dependent cell damages in multi-photon confocal microscopy’. In: Optical and Quantum Electronics (in press 2002)

    Google Scholar 

  42. T.-M. Liu, S.-W. Chiu, I-H. Chen, C.-K. Sun, B.-L. Lin, W.-J. Yang, P.-C. Cheng, and I. Johnson: ‘Multi-photon fluorescence of green fluorescence protein (GFP) and commonly used bio-probes excited by femtosecond Cr:forsterite lasers’, In: Proceedings of 2nd International Photonics Conference, ed. by Hsinchu (TAIWAN, 2000 119) pp. 121–

    Google Scholar 

  43. T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson: J. Scanning Microscopies 23, 249 (2001)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, CK. (2003). Second Harmonic Generation Microscopy Versus Third Harmonic Generation Microscopy in Biological Tissues. In: Török, P., Kao, FJ. (eds) Optical Imaging and Microscopy. Springer Series in Optical Sciences, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46022-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46022-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14381-0

  • Online ISBN: 978-3-540-46022-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics