Skip to main content

Assessment of Shock and Boundary Layer Control Concepts for Hybrid Laminar Flow Wing Design

  • Conference paper
Drag Reduction by Shock and Boundary Layer Control

Summary

The contribution of Dasa Airbus to the EUROSHOCK II project in Task 2 and 4 is focused on the assessment of different control devices—active control by cavity/ perforated plate arrangement, discrete suction, and bump— for the application to a hybrid laminar flow wing of a long-range transport aircraft.

The DA viscous inviscid interaction airfoil/swept wing code was improved and extented to treat various shock and boundary layer control devices within Task 2. Extensive computations were carried out for the laminar-type airfoil DRA 2303, the turbulent-type airfoils RAE 5225, MBB Va2 and ADIF and the sheared wing ADIF. The effect of flow control on the pressure distribution could be predicted with sufficient accuracy rendering the code suitable for the application in Task 4 for the control device assessment.

Shock control by using an adaptive bump has shown the greatest potential for drag reduction in the computations as well as in the experiments, while drag reduction by discrete slot suction although successful, is considerably reduced when pump drag is taken into account.

Based on the characteristic features of a laminar wing, the adaptive variable-height bump device seems to be the best means for drag reduction when shock waves are present. A bump parametric study was carried out leading to the establishment of limiting bump parameters and their sensitivity.

For a representative A340-type hybrid laminar flow wing section an adaptive bump design was performed. Its integration into the wing spoiler requires modifications of the A340 wing structure: modification of the wing box, enlargement of the spoiler and introduction of a variable camber flap system for roll control. Two structure and system concepts were suggested for a preliminary realization of the bump integration into the spoiler. Using the wing section polars with the adaptive bump drag characteristics, the estimated drag balance indicates a drag reduction of up to 4% for the complete aircraft and fuel savings of up to 2.1% for a typical transatlantic mission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stanewsky,E.,Delery,J.,Fulker,J.,Geißler,W.:”EUROSHOCK–Drag Reduction by Passive Shock Control Results of the Project EUROSHOCK, AER2–CT92–0049, Supported by the European Union, 1993–1995, Notes on numerical Fluid Mechanics, Vol. 56, Vieweg Verlag, Braunschweig 1997.

    Google Scholar 

  2. Stanewsky,E.:”EUROSHOCK II–Drag Reduction by Shock and Boundary Layer Control”,Technical Annex, Project BE-1316, IMT, Aera–3 Aeronautics, 1995–1998.

    Google Scholar 

  3. Dargel,G.:” Validation of DA Airfoil/Swept Wing Code for Shock and Boundary Layer Control–EUROSHOCK II–Final Technical Report of DA Contribution to Task 2”, Euroshock TR–BRPR-95–0076, DA–Report EF-068/99, 1999

    Google Scholar 

  4. Thiede,P.,Dargel,G.:” Assessment of Shock and Boundary Layer Control Concepts for Hybrid Laminar Flow Wing Design–EUROSHOCK II–Final Technical Report of DA Contribution to Task 4”, Euroshock TRBRPR-95–0076, DA Report EF-069/99, 1999

    Google Scholar 

  5. Dargel,G.:”Ein Programmsystem für die Berechnung transsonischer Profil–und konischer Fluegelstroemungen auf der Basis gekoppelter Potential–und Grenzschichtloesungen”, DGLR–Bericht 92–07,1992.

    Google Scholar 

  6. Le Balleur,J.C.:”Strong matching method for computing transonic viscous flows including wakes and separations. Lifting airfoils”, La Rech. Aerosp. 1981–3, 1981.

    Google Scholar 

  7. Veldman,A.E.P.:”New, quasi–simultaneous method to calculate interacting boundary layers”, AIAA Journal, Vol. 154, 1981.

    Google Scholar 

  8. Cebeci,T.,Khattab,A.A.,Chen,H.H.,Chen,L.T.:”An approach to the design of wings; the role of mathematics, physics and economics”,AIAA Paper No.92–0286,Reno,1992.

    Google Scholar 

  9. Carter,J.E.:”A new boundary–layer inviscid iteration technique for separated flow”, AIAA Paper No. 79–1450,1979.

    Google Scholar 

  10. Cebeci,T.,Smith,A.M.O.:”Analysis of turbulent boundary layers”, Academic Press, New York, 1974.

    Google Scholar 

  11. Poll,D.I.A.,Danks,M.,Humphreys,B.E.:”The aerodynamic performance of the laser drilled sheets”, In Proceedings’First European Forum on Laminar Flow Technology’, DGLR–Bericht 92–06,1992.

    Google Scholar 

  12. Bohning,R., Doerffler,P.:”Hybrid and Active Control of the Shock Wave–Turbulent Boundary Layer Interaction and Porous Plate Transpiration Flow”, Final Technical Report, Contribution of Karlsruhe University to the project EUROSHOCK II, Contract BRPR–CT95–0076, 1999. (also see Chapter 12 of the present Volume)

    Google Scholar 

  13. Pankhurst,R.C.,Gregory,N.:”Power requirements for distributed suction for increasing maximum lift”, ARC CP 82, 1952.

    Google Scholar 

  14. Ashill,P.R,Fulker,J.,L., Simmons,M.,J.:”Simulated active control of shock waves in experiments on aerofoil models”, Proceedings ICEFM,Turin,July 1994.

    Google Scholar 

  15. Dargel,G.:”Extension, Validation and Application of the DA VII Transonic Airfoil Code with Passive Shock Control”, Chap. 14, p.195–220, in Notes on numerical Fluid Mechanics, Vol. 56, Vieweg Verlag, Braunschweig 1997.

    Google Scholar 

  16. de Matteis,P.,Dima,C.:”Assessment of CFD Capabilities and Concepts for Shock and Boundary Layer Active Control on Transonic Airfoils”, EUROSHOCK–TASK 2, Cira TR-97–097/Euroshock TR–BRPR-95–76/2.2, 1997.

    Google Scholar 

  17. Dargel,G.,Rodde,A.M.,Archambaud,J.P.:”Assessment of the Capability of Drag Reduction of the Shock Control Device’SC Bump’ on Airfoil Flows and Applications Aspects on Wings”, in IUTAM Symposium on Mechanics of Passive and Active Flow Control, Editor: G.E.A.Meier and P.R. Viswanath, Kluwer Academic Publishers,1999.

    Google Scholar 

  18. Drela,M.,Giles,M.B.:”ISES: A two–dimensional viscous aerodynamic design and analysis code”,AIAA Paper 87–0424, 1987.

    Google Scholar 

  19. Dziomba,B.:”ELFIN– Final Technical Report”,BRITE/EURAM Areas Aeronautics, Contract No AERO–0013–C(MB), 1992

    Google Scholar 

  20. Seumenicht,L.:”Untersuchung zum Potential der Hybridlaminarisierung von Verkehrsflugzeugen”,Studienarbeit,Institut für Aerodynamik und Gasdynamik,Universität Stuttgart, 1992.

    Google Scholar 

  21. Mertol,S.,Dargel,G.:”SC Bump Parameterstudie und Entwurf eines Bumps am A340–Hybridlaminarprofil PHLF1”, DA Report EF-034/97,1997

    Google Scholar 

  22. Monner,H.P.,Breitbach,E.,Bein,T.,Hanselka,H.:”Strukturkonzepte für den adaptiven Flügel”, Aeroelastik–Tagung der DGLR, DLR Göttingen,29.-30.Juni,1998

    Google Scholar 

  23. Martin,W.: Private Communication, Daimler Chrysler Forschung & Technologie, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dargel, G., Thiede, P. (2002). Assessment of Shock and Boundary Layer Control Concepts for Hybrid Laminar Flow Wing Design. In: Stanewsky, E., DĂ©lery, J., Fulker, J., de Matteis, P. (eds) Drag Reduction by Shock and Boundary Layer Control. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45856-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45856-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07762-3

  • Online ISBN: 978-3-540-45856-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics