Skip to main content

Abstract

Cell traction forces are vital for many biological processes, including angiogenesis, inflammation, wound healing, and metastasis. The study of cell traction forces enables us to better understand the mechanisms of these biological processes at the cellular and molecular levels. Because of the small size of a cell and low magnitude of cell traction forces (∼10nN), it is a daunting task to determine cell traction forces reliably and accurately. In this chapter we review the current methods for determining cell traction forces, with special focus on a new technology for cell traction force microscopy (CTFM) we have recently developed. We conclude this chapter by discussing possible areas for improvement in CTFM and also suggesting potential applications of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76(3):1274–1278

    Article  PubMed  CAS  Google Scholar 

  • Burton K, Park JH, Taylor DL (1999) Keratocytes generate traction forces in two phases. Mol Biol Cell 10(11):3745–3769

    PubMed  CAS  Google Scholar 

  • Burton K, Taylor DL (1997) Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385(6615):450–454

    Article  PubMed  CAS  Google Scholar 

  • Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282(3):595–605

    Google Scholar 

  • Campbell BH, Clark WW, Wang JH (2003) A multi-station culture force monitor system to study cellular contractility. J Biomech 36(1):137–140

    Article  PubMed  Google Scholar 

  • Campbell BH, Agarwal C, Wang JH (2004) TGF-betal, TGF-beta3, and PGE(2) regulate contraction of human patellar tendon fibroblasts. Biomech Model Mechanobiol 2(4):239–245

    Article  PubMed  CAS  Google Scholar 

  • Delvoye P, Wiliquet P, Leveque JL, Nusgens BV, Lapiere CM (1991) Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel. J Invest Dermatol 97(5):898–902

    Article  PubMed  CAS  Google Scholar 

  • Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76(4):2307–2316

    PubMed  CAS  Google Scholar 

  • Dembo M, Oliver T, Ishihara A, Jacobson K (1996) Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J 70(4):2008–2022

    PubMed  CAS  Google Scholar 

  • Ferrenq I, Tranqui L, Vailhe B, Gumery PY, Tracqui P (1997) Modelling biological gel contraction by cells: mechanocellular formulation and cell traction force quantification. Acta Biotheor 45(3–4):267–293

    Article  PubMed  CAS  Google Scholar 

  • Galbraith CG, Sheetz MP (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci USA 94(17):9114–9118

    Article  PubMed  CAS  Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440):177–179

    Article  PubMed  CAS  Google Scholar 

  • Landau LD, Lifshitz EM (1986) Theory of elasticity, 3rd edn. Pergamon, Oxford

    Google Scholar 

  • Lavrentev MM, Romanov VG, Shishatskii SP (1986) Ill-posed problems of mathematical physics and analysis, 3rd edn. American Mathematical Society, Providence, Rhode Island

    Google Scholar 

  • Marganski WA, Dembo M, Wang YL (2003) Measurements of cell-generated deformations on flexible substrata using correlation-based optical flow. Methods Enzymol 361:197–211

    PubMed  Google Scholar 

  • Moon AG, Tranquillo RT (1993) Fibroblast-populated collagen microsphere assay of cell traction force 1. Continuum model. AIChE J 39(1):163–177

    Article  CAS  Google Scholar 

  • Pelham RJ, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25):13661–12665

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E, Reed JC (1994) Anchorage dependence, integrins, and apoptosis. Cell 77(4):477–478

    Article  PubMed  CAS  Google Scholar 

  • Schwarz US, Balaban NQ, Riveline D, Bershadsky A, Geiger B, Safran SA (2002) Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys J 83(3):1380–1394

    Article  PubMed  CAS  Google Scholar 

  • Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100(4):1484–1489

    Article  PubMed  CAS  Google Scholar 

  • Wang YL, Pelham RJ (1998) Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol 298:489–496

    Article  PubMed  CAS  Google Scholar 

  • Yang ZC, Lin J-S, Chen J, Wang J-C (2006) Determining substrate displacement and cell traction fields: a new approach. J Theoret Biol 242:607–616

    Article  CAS  Google Scholar 

  • Zienkiewicz OC, Taylor RL, Nithiarasu P, Zhu JZ ( 2005) The finite element method: its basis and fundamentals, 6th edn. Butterworth-Heinemann, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. -C. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, J.H.C., Lin, JS., Yang, ZC. (2007). Cell Traction Force Microscopy. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics