Skip to main content

NOTCH and the Patterning of Ommatidial Founder Cells in the Developing Drosophila Eye

  • Chapter
Drosophila Eye Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 37))

Abstract

Each Drosophila compound eye is composed of hundreds of similar ommatidia, or unit eyes. Ommatidial differentiation begins at the posterior margin of the eye imaginal disc and extends more anteriorly as a “morphogenetic furrow” sweeps across the eye disc. Anterior to the position reached by the morphogenetic furrow, cells are proliferative and undifferentiated. Posterior to the morphogenetic furrow, ommatidia differentiate in dorso-ventral columns (Fig. 1; Wolff and Ready 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker NE (2000) Notch signalling in the nervous system. Pieces still missing from the puzzle. BioEssays 22: 264–273

    Google Scholar 

  • Baker NE, Rubin GM (1989) Effect on eye development of dominant mutations in Drosophila homologue of EGF receptor. Nature 340: 150–153

    Article  PubMed  CAS  Google Scholar 

  • Baker NE, Rubin GM (1992) Ellipse mutations in the Drosophila homologue of the EGF receptor affect pattern formation, cell division, and cell death in eye imaginal discs. Dev Biol 150: 381–396

    Google Scholar 

  • Baker NE, Yu S (1997). Proneural function of neurogenic genes in the developing Drosophila eye. Curr Biol 7: 122–132

    Article  PubMed  CAS  Google Scholar 

  • Baker NE, Yu SY (1998) The R8-photoreceptor equivalence group in Drosophila: fate choice precedes regulated Delta transcription and is independent of Notch gene dose. Mech Dev 74: 3–14

    Article  PubMed  CAS  Google Scholar 

  • Baker NE, Yu SY (2001) The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell 104: 699–708

    Article  PubMed  CAS  Google Scholar 

  • Baker NE, Zitron AE (1995) Drosophila eye development: Notch and Delta amplify a neurogenic pattern conferred on the morphogenetic furrow by scabrous. Mech Dev 49: 173–189

    Google Scholar 

  • Baker NE, Mlodzik M, Rubin GM (1990) Spacing differentiation in the developing Drosophila eye: a fibrinogen-related lateral inhibitor encoded by scabrous. Science 250: 1370–1377

    Article  PubMed  CAS  Google Scholar 

  • Baker NE, Yu S, Han D (1996) Evolution of proneural atonal expression during distinct regulatory phases in the developing Drosophila eye. Curr Biol 6: 1290–1301

    Article  PubMed  CAS  Google Scholar 

  • Baonza A, Casci T, Freeman M (2001) A primary role for the EGF receptor in ommatidial spacing in the Drosophila eye. Curr Biol 396–404

    Google Scholar 

  • Brou C, Logeat F, Lecourtois M, Vandekerckhove J, Kourilsky P, Schweisguth F, Israel A (1994) Inhibition of the DNA-binding activity of Drosophila Suppressor of Hairless and of its human homolog, KBF2/RBP-J kappa, by direct protein-protein interaction with Drosophila Hairless. Genes Dev 8: 2491–2503

    Article  PubMed  CAS  Google Scholar 

  • Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA, Israel A (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrinmetalloprotease TACE. Mol Cell 5: 207–216

    Article  PubMed  CAS  Google Scholar 

  • Brown NL, Paddock SW, Markey DR, Carroll SB (1991) hairy gene function in the Drosophila eye: normal expression is dispensable but ectopic expression alters cell fates. Development 113: 1245–1256

    Google Scholar 

  • Brown NL, Sattler SA, Paddock SW, Carroll SB (1995) hairy and emc negatively regulate morphogenetic furrow progression in the developing Drosophila eye. Cell 80: 879–887

    Google Scholar 

  • Brown NL, Paddock SW, Sattler CA, Cronmiller C, Thomas BJ, Carroll SB (1996) daughterless is required for Drosophila photoreceptor cell determination, eye morphogenesis, and cell cycle progression. Dev Biol 179: 65–78

    Google Scholar 

  • Cagan R (1993) Cell fate specification in the developing Drosophila retina. Dev Supp1:19–28 Cagan R, Ready D (1989) Notch is required for successive cell decisions in the developing Drosophila eye. Genes Dev 3: 1099–1112

    Article  Google Scholar 

  • Campos-Ortega JA, Jan YN (1991) Genetic and molecular bases of neurogenesis in Drosophila melanogaster. Annu Rev Neurosci 14: 399–420

    Article  PubMed  CAS  Google Scholar 

  • Campos-Ortega JA, Knust E (1990) Defective ommatidial cell assembly leads to defective morphogenesis: a phenotypic analysis of the E(spl) ° mutation of Drosophila melanogaster. Roux’s Arch Dev Biol 198: 286–294

    Article  Google Scholar 

  • Chanut F, Luk A, Heberlein U (2000) A screen for dominant modifiers of room, a mutation that disrupts morphogenetic furrow progression in Drosophila, identifies groucho and Hairless as regulators of atonal expression. Genetics 156: 1203–1217

    PubMed  CAS  Google Scholar 

  • Chen C-K, Chien C-T (1999) Negative regulation of atonal in proneural cluster formation of Drosophila R8 photoreceptors. Proc Natl Acad Sci USA 96: 5055–5060

    Article  PubMed  CAS  Google Scholar 

  • Culi J, Modolell J (1998) Proneural gene self-stimulation in neural precursors: an essential mechanism for sense organ development that is regulated by Notch signaling. Genes Dev 12: 2036–2047

    Article  PubMed  CAS  Google Scholar 

  • Curtiss J, Mlodzik M (2000) Morphogenetic furrow initiation and progression during eye development in Drosophila: the roles of decapentaplegic, hedgehog and eyes absent. Development 127: 1325–1336

    PubMed  CAS  Google Scholar 

  • Doe CQ, Goodman CS (1985) Early events in insect neurogenesis. II. The role of cell interactions and cell lineage in the development of neuronal precursor cells. Dev Biol 111: 206–219

    Google Scholar 

  • Dokucu ME, Zipursky SL, Cagan RL (1996) Atonal, Rough and the resolution of proneural clusters in the developing Drosophila retina. Development 122: 4139–4147

    PubMed  CAS  Google Scholar 

  • Dominguez M (1999) Dual role for Hedgehog in the regulation of the proneural gene atonal during ommatidia development. Development 126: 2345–2353

    PubMed  CAS  Google Scholar 

  • Dominguez M, Wassarman JD, Freeman M (1998) Multiple functions of the EGF receptor in Drosophila eye development. Curr Biol 8: 1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Furriols M, Bray S (2000) Dissecting the mechanisms of Suppressor of Hairless function. Dev Biol 227: 520–532

    Article  PubMed  CAS  Google Scholar 

  • Greenwald I, Rubin GM (1992) Making a difference: the role of cell-cell interactions in establishing separate identities for equivalent cells. Cell 68: 271–281

    Article  PubMed  CAS  Google Scholar 

  • Greenwood S, Struhl G (1999) Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway. Development 126: 5795–5808

    Google Scholar 

  • Heitzler P, Simpson P (1991) The choice of cell fate in the epidermis of Drosophila. Cell 64: 1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Jan YN, Jan LY (1993) HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75:827–830 Jarman AP, Brand M, Jan LY, Jan YN (1993) The regulation and function of the helix-loop-helix gene, asense, in Drosophila neural precursors. Development 119: 19–29

    Google Scholar 

  • Jarman AP, Grell EH, Ackerman L, Jan LY, Jan YN (1994) atonal is the proneural gene for Drosophila photoreceptors. Nature 369: 398–400

    Google Scholar 

  • Jarman AP, Sun Y, Jan LY, Jan YN (1995) Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 121: 2019–2030

    PubMed  CAS  Google Scholar 

  • Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A (1995) Signalling downstream of

    Google Scholar 

  • activated mammalian Notch. Nature 377:355–358

    Google Scholar 

  • Jennings B, Preiss A, Delidakis C, Bray S (1994) The Notch signalling pathway is required for Enhancer of split bHLH protein expression during neurogenesis in the Drosophila embryo. Development 120: 3537–3548

    PubMed  CAS  Google Scholar 

  • Jimenez F, Campos-Ortega JA (1987) Genes in subdivision 1B of the Drosophila melanogaster X-chromosome and their influence on neural development. J Neurogenet 4: 179–200

    PubMed  CAS  Google Scholar 

  • Jin M-H, Sawamoto K, Ito M, Okano H (2000) The interaction between the Drosophila secreted protein Argos and the epidermal growth factor receptor inhibits dimerization of the receptor and binding of secreted Spitz to the receptor. Mol Cell Biol 20: 2098–2107

    Article  PubMed  CAS  Google Scholar 

  • Karim FD, Chang HC, Therrien M, Wassarman DA, Laverty T, Rubin GM (1996) A screen for genes that function downstream of Rasl during Drosophila eye development. Genetics 143: 315–329

    PubMed  CAS  Google Scholar 

  • Kidd S, Lieber T, Young MW (1998) Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes Dev 12: 3728–3740

    Article  PubMed  CAS  Google Scholar 

  • Klein T, Seugnet L, Haenlin M, Martinez-Arias A (2000) Two different activities of Suppressor of Hairless during wing development in Drosophila. Development 127: 3553–3566

    PubMed  CAS  Google Scholar 

  • Kumar JP, Tio M, Hsiung F, Akopyan S, Seger R, Shilo B-Z, Moses K (1998) Dissecting the roles of the Drosophila EGF receptor in eye development and MAP kinase activation. Development 125: 3875–3885

    PubMed  CAS  Google Scholar 

  • Lebovitz RM, Ready DF (1986) Ommatidial development in Drosophila eye disc fragments. Dev Biol 117: 663–671

    Article  PubMed  CAS  Google Scholar 

  • Lecourtois F, Schweisguth F (1998) Indirect evidence for Delta-dependent intracellular processing of Notch in Drosophila embryos. Curr Biol 8: 771–774

    Article  PubMed  CAS  Google Scholar 

  • Lee E, Baker NE (1996) GP300sca is not a high affinity ligand for Notch. Biochem Biophy Res Comm 225: 720–725

    Article  CAS  Google Scholar 

  • Lee E-C, Hu X, Yu SY, Baker NE (1996) The scabrous gene encodes a secreted glycoprotein dimer and regulates proneural development in Drosophila eyes. Mol Cell Biol 16: 1179–1188

    PubMed  CAS  Google Scholar 

  • Lee E-C, Yu S-Y, Baker NE (2000) The SCABROUS protein can act as an extracellular antagonist of Notch signaling in the Drosophila wing. Curr Biol 10: 931–934

    Article  PubMed  CAS  Google Scholar 

  • Lee JE (1997) Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol 7: 13–20

    Article  PubMed  Google Scholar 

  • Lesokhin A, Yu S-Y, Katz J, Baker NE (1999) Several levels of EGF Receptor signalling during photoreceptor specification in Ellipse, wild type, and null mutant Drosophila. Dev Biol 205: 129–144

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Baker NE (2001) Proneural enhancement by Notch overcomes Suppressor-of-Hairlessrepressor function in the developing Drosophila eye. Curr Biol 11: 330–338

    Article  PubMed  CAS  Google Scholar 

  • Lieber T, Kidd S, Alcamo E, Corbin V, Young MW (1993) Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function of Notch in nuclei. Genes Dev 7: 1949–1965

    Article  PubMed  CAS  Google Scholar 

  • Ligoxygakis P, Yu S-Y, Delidakis C, Baker NE (1998) A subset of N functions during Drosophila eye development require Su(H) and the E(spl) gene complex. Development 125: 2893–2900

    PubMed  CAS  Google Scholar 

  • Ligoxygakis P, Bray SJ, Apidianakis Y, Delidakis C (1999) Ectopic expression of individual E(spl) genes has differential effects in different cell fate decisions and underscores the biphasic requirement for Notch activity in wing margin establishment in Drosophila. Development 126: 2205–2214

    PubMed  CAS  Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic Press, London

    Google Scholar 

  • Mlodzik M, Baker NE, Rubin GM (1990) Isolation and expression of scabrous, a gene regulating neurogenesis in Drosophila. Genes Dev 4: 1848–1861

    Article  PubMed  CAS  Google Scholar 

  • Moore AW, Barbel S, Jan LY, Jan YN (2000) A genome-wide survey of basic helix-loop-helix factors in Drosophila. Proc Natl Acad Sci USA 97: 10436–10441

    Article  PubMed  CAS  Google Scholar 

  • Morel V, Schweisguth F (2000) Repression by Suppressor of Hairless and activation by Notch are required to define a single row of single-minded expressing cells in the Drosophila embryo. Genes Dev 14: 377–388

    PubMed  CAS  Google Scholar 

  • Moscoso del Prado J, Garcia-Bellido A (1984) Cell interactions in the generation of chaetae pattern in Drosophila. Roux’s Arch Dev Biol 193: 246–251

    Article  Google Scholar 

  • Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ, Kopan R (2000) A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notchl. Mol Cell 207: 197–206

    Article  Google Scholar 

  • Nakao K, Campos-Ortega JA (1996) Persistent expression of genes of the Enhancer of split complex suppresses neural development in Drosophila. Neuron 16: 275–286

    Article  PubMed  CAS  Google Scholar 

  • Nolo R, Abbot LA, Bellen HJ (2000) Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102: 349–362

    Article  PubMed  CAS  Google Scholar 

  • Parks AL, Turner RF, Muskavitch MAT (1995) Relationships between complex Delta expression and the specification of retinal fates during Drosophila eye development. Mech Dev 50: 201–216

    Article  PubMed  CAS  Google Scholar 

  • Powell PA, Wesley CS, Spencer S, Cagan RL (2001) Scabrous complexes with Notch to mediate boundary formation. Nature 409: 626–630

    Article  PubMed  CAS  Google Scholar 

  • Qi H, Rand MD, Wu X, Sestan N, Wang W, Rakic P, Xu T, Artavanis-Tsakonas S (1999) Processing of the Notch ligand Delta by the metalloprotease Kuzbanian. Science 283: 91–94

    Article  PubMed  CAS  Google Scholar 

  • Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53: 217–240

    Article  PubMed  CAS  Google Scholar 

  • Rebay I, Fleming RJ, Fehon RG, Cherbas L, Cherbas P, Artavanis-Tsakonas S (1991) Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell 67: 687–699

    Article  PubMed  CAS  Google Scholar 

  • Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 373: 304–305

    Google Scholar 

  • Schweitzer R, Howes R, Smith R, Shilo BZ, Freeman M (1995) Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376: 699–702

    Article  PubMed  CAS  Google Scholar 

  • Simpson P (1997) Notch signalling in development: on equivalence groups and asymmetric developmental potential. Curr Opin Genet Dev 7: 537–542

    Article  PubMed  CAS  Google Scholar 

  • Spencer SA, Powell PA, Miller DT, Cagan RL (1998) Regulation of EGF receptor signaling establishes pattern across the developing Drosophila retina. Development 125: 4777–4790

    PubMed  CAS  Google Scholar 

  • Struhl G, Adachi A (1998) Nuclear access and action of Notch in vivo. Cell 93 649–660

    Article  PubMed  CAS  Google Scholar 

  • Struhl G, Greenwald I (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nat Genet 398: 522–525

    Article  CAS  Google Scholar 

  • Sun Y, Jan LY, Jan YN (1998) Transcriptional regulation of atonal during development of the Drosophila peripheral nervous system. Development 125: 3731–3740

    PubMed  CAS  Google Scholar 

  • Sun Y, Jan LY, Jan YN (2000) Ectopic Scute induces Drosophila ommatidia development without R8 founder photoreceptors. Proc Natl Acad Sci USA 97: 6815–6819

    Article  PubMed  CAS  Google Scholar 

  • The I, Hannigan GE, Cowley GS, Reginald S, Zhong Y, Gusella JF, Hariharan IK, Bernards A (1997)

    Google Scholar 

  • Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276:791–794

    Google Scholar 

  • Tio M, Moses K (1997) The Drosophila TGFalpha homolog Spitz acts in photoreceptor recruitment in the developing retina. Development 124: 343–351

    Google Scholar 

  • Tomlinson A, Ready DF (1987) Neuronal differentiation in the Drosophila ommatidium. Dev Biol 120: 366–376

    Article  PubMed  CAS  Google Scholar 

  • Treisman JE, Rubin GM (1996) Targets of glass regulation in the Drosophila eye disc. Mech Dev 56: 17–24

    Article  PubMed  CAS  Google Scholar 

  • Treisman JE, Luk A, Rubin GM, Heberlein U (1997) eyelid antagonizes wingless signaling during Drosophila development and has homology to the Bright family of DNA-binding proteins. Genes Dev 11: 1949–1962

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B 237: 37–72

    Article  Google Scholar 

  • Verheyen EM, Purcell KJ, Fortini ME, Artavanis-Tsakonas S (1996) Analysis of dominant enhancers and suppressors of activated Notch in Drosophila. Genetics 144: 1127–1141

    PubMed  CAS  Google Scholar 

  • White NM, Jarman AP (2000) Drosophila Atonal controls photoreceptor R8-specific properties and modulates both receptor tyrosine kinase and Hedgehog signalling. Development 127: 1681–1689

    Google Scholar 

  • Wigglesworth VB (1940) Local and general factors in the development of “pattern” in Rhodnius prolixus (Hemiptera). J Exp Zool 17: 180–220

    Google Scholar 

  • Wilcox M, Mitchison GJ, Smith RJ (1973) Pattern formation in the bluegreen alga, Anabaena. J Cell Sci 12: 707–723

    PubMed  CAS  Google Scholar 

  • Wolff T, Ready DF (1993) Pattern formation in the Drosophila retina. In: Bate M, Martinez Arias A (eds) The Development of Drosophila melanogaster, vol 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin D (2000) MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 26: 484–489

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Rubin GM (1993) Analysis of genetic mosaics in the developing and adult Drosophila tissues. Development 117: 1223–1236

    PubMed  CAS  Google Scholar 

  • Yang L, Baker NE (2001) Role of the EGFR/Ras/Raf pathway in specification of photoreceptor cells in the Drosophila retina. Development 128: 1183–1191

    PubMed  CAS  Google Scholar 

  • Ye Y, Lukinova N, Fortini ME (1999) Neurogenic phenotypes and altered Notch processing in Drosophila presenilin mutants. Nat Genet 398: 525–529

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baker, N.E. (2002). NOTCH and the Patterning of Ommatidial Founder Cells in the Developing Drosophila Eye. In: Moses, K. (eds) Drosophila Eye Development. Results and Problems in Cell Differentiation, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45398-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45398-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53640-3

  • Online ISBN: 978-3-540-45398-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics