Advertisement

The Complexity of Checking Consistency of Pedigree Information and Related Problems

  • Luca Aceto
  • Jens A. Hansen
  • Anna Ingólfsdóttir
  • Jacob Johnsen
  • John Knudsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2841)

Abstract

Consistency checking is a fundamental computational problem in genetics. Given a pedigree and information on the genotypes (of some) of the individuals in it, the aim of consistency checking is to determine whether these data are consistent with the classic Mendelian laws of inheritance. This problem arose originally from the geneticists’ need to filter their input data from erroneous information, and is well motivated from both a biological and a sociological viewpoint. This paper shows that consistency checking is NP-complete, even with focus on a single gene and in the presence of three alleles. Several other results on the computational complexity of problems from genetics that are related to consistency checking are also offered. In particular, it is shown that checking the consistency of pedigrees over two alleles, and of pedigrees without loops, can be done in polynomial time.

Keywords

Polynomial Time Consistency Check Conjunctive Normal Form Genotype Information Pedigree Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abecasis, G.R., Cherny, S.S., Cookson, W.O., Cardon, L.R.: Merlin: Rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics 30, 97–101 (2002)CrossRefGoogle Scholar
  2. 2.
    Aceto, L., Hansen, J.A., Ingólfsdóttir, A., Johnsen, J., Knudsen, J.: The complexity of checking consistency of pedigree information and related problems, Research Report RS–03–17, BRICS (2003), Available from http://www.brics.dk/RS/03/17/
  3. 3.
    Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. C-35, 677–691 (1986)CrossRefGoogle Scholar
  4. 4.
    Decode News Center (November 2001), http://www.decode.com/news/releases/
  5. 5.
    Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability (SAT) problem: a survey. In: Satisfiability problem: theory and applications (Piscataway, NJ, 1996). DIMACS Ser. Discrete Math. Theoret. Comput. Sci, vol. 35, pp. 19–151. Amer. Math. Soc, Providence (1997)Google Scholar
  6. 6.
    Gudbjartsson, D.F., Jonasson, K., Kong, C.A.: Fast multipoint linkage calculation with Allegro. Nature Genetics 20, 12–13 (2000)CrossRefGoogle Scholar
  7. 7.
    Klug And, W.S., Cummings, M.R.: Concepts of Genetics, 5th edn. Prentice-Hall, Englewood Cliffs (1997)Google Scholar
  8. 8.
    Kruglyak, L., Daly, M.J., Reeve-Daly, M.P., Lander, E.S.: Parametric and nonparametric linkage analysis: A unified multipoint approach. American Journal of Human Genetics 58, 1347–1363 (1996)Google Scholar
  9. 9.
    Lange, K., Goradia, T.M.: An algorithm for automatic genotype elimination. American Journal of Human Genetics 40, 250–256 (1987)Google Scholar
  10. 10.
    Li, J., Jiang, T.: Efficient rule-based haplotyping algorithms for pedigree data [extended abstract]. In: Proceedings of RECOMB 2003, Berlin, Germany, April 10-13, pp. 197–206. ACM, New York (2003)CrossRefGoogle Scholar
  11. 11.
    O’Connell, J.R., Weeks, D.E.: Pedcheck: A program for identification of genotype incompatibilities in linkage analysis. American Journal of Human Genetics 63, 259–266 (1998)CrossRefGoogle Scholar
  12. 12.
    O’Connell, J.R., Weeks, D.E.: An optimal algorithm for automatic genotype elimination. American Journal of Human Genetics 65, 1733–1740 (1999)CrossRefGoogle Scholar
  13. 13.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1995)Google Scholar
  14. 14.
    Piccolboni, A., Gusfield, D.: On the complexity of fundamental computational problems in pedigree analysis, Tech. Rep. CSE-99-8, Computer Science Department, University of California, Davis (September 1999); Revised version to appear in the Journal of Computational BiologyGoogle Scholar
  15. 15.
    Sobel, E., Papp, J.C., Lange, K.: Detection and integration of genotyping errors in statistical genetics. American Journal of Human Genetics 70, 496–508 (2002)CrossRefGoogle Scholar
  16. 16.
    Strachan, T., Read, A.P.: Human Molecular Genetics 2. Wiley-Liss, Chichester (1999)Google Scholar
  17. 17.
    Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201 (1979)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Luca Aceto
    • 1
  • Jens A. Hansen
    • 1
  • Anna Ingólfsdóttir
    • 1
    • 2
  • Jacob Johnsen
    • 1
  • John Knudsen
    • 1
  1. 1.BRICS (Basic Research in Computer Science), Centre of the Danish National Research Foundation, Department of Computer ScienceAalborg UniversityAalborg ØDenmark
  2. 2.deCODE GeneticsReykjavíkIceland

Personalised recommendations