Skip to main content

Extreme Nash Equilibria

  • Conference paper
Book cover Theoretical Computer Science (ICTCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2841))

Included in the following conference series:

Abstract

We study the combinatorial structure and computational complexity of extreme Nash equilibria, ones that maximize or minimize a certain objective function, in the context of a selfish routing game. Specifically, we assume a collection of nusers, each employing a mixed strategy, which is a probability distribution over m parallel links, to control the routing of its own assigned traffic. In a Nash equilibrium, each user routes its traffic on links that minimize its expected latency cost.

Our structural results provide substantial evidence for the Fully Mixed Nash Equilibrium Conjecture, which states that the worst Nash equilibrium is the fully mixed Nash equilibrium, where each user chooses each link with positive probability. Specifically, we prove that the Fully Mixed Nash Equilibrium Conjecture is valid for pure Nash equilibria and that under a certain condition, the social cost of any Nash equilibrium is within a factor of 6 + ε, of that of the fully mixed Nash equilibrium, assuming that link capacities are identical.

Our complexity results include hardness, approximability and inapproximability ones. Here we show, that for identical link capacities and under a certain condition, there is a randomized, polynomial-time algorithm to approximate the worst social cost within a factor arbitrarily close to 6 + ε. Furthermore, we prove that for any arbitrary integer k > 0, it is \(\mathcal{NP}\)-hard to decide whether or not any given allocation of users to links can be transformed into a pure Nash equilibrium using at most k selfish steps. Assuming identical link capacities, we give a polynomial-time approximation scheme (PTAS) to approximate the best social cost over all pure Nash equilibria. Finally we prove, that it is \(\mathcal{NP}\)-hard to approximate the worst social cost within a multiplicative factor 2 - \(\frac{\rm 2}{m+1} - \epsilon\). The quantity 2 - \(\frac{\rm 2}{m+1}\) is the tight upper bound on the ratio of the worst social cost and the optimal cost in the model of identical capacities.

This work has been partially supported by the IST Program of the European Union under contract numbers IST-1999-14186 (ALCOM-FT) and IST-2001-33116 (FLAGS), by funds from the Joint Program of Scientific and Technological Collaboration between Greece and Cyprus, and by research funds from the University of Cyprus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brucker, P., Hurink, J., Werner, F.: Improving Local Search Heuristics for Some Scheduling Problems. Part II. Discrete Applied Mathematics 72(1-2), 47–69 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Czumaj, A., Vöcking, B.: Tight Bounds forWorst-Case Equilibria. In: Proceedings of the 13th Annual ACM Symposium on Discrete Algorithms, January 2002, pp. 413–420 (2002)

    Google Scholar 

  3. Deng, X., Papadimitriou, C., Safra, S.: On the Complexity of Equilibri. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, May 2002, pp. 67–71 (2002)

    Google Scholar 

  4. Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and the Coordination Ratio for a Selfish Routing Game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT 19, 312–320 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Complexity Results for Multiprocessor Scheduling Under Resoiurce Constraints. SIAM Journal on Computing 4, 397–411 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  9. Gonnet, G.H.: Expected Length of the Longest Probe Sequence in Hash Code Searching. Journal of the ACM 28(2), 289–304 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hochbaum, D.S., Shmoys, D.: Using Dual Approximation Algorithms for Scheduling Problems: Theoretical and Practical Results. Journal of the ACM 34(1), 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  11. Horowitz, E., Sahni, S.: Exact and Approximate Algorithms for Scheduling Non-Identical Processors. Journal of the ACM 23(2), 317–327 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  13. Kolchin, V.F., Chistiakov, V.P., Sevastianov, B.A.: Random Allocations. V. H. Winston, New York (1978)

    Google Scholar 

  14. Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate Equilibria and Ball Fusion. In: Proceedings of the 9th International Colloquium on Structural Information and Communication Complexity, Andros, Greece (June 2002) (Accepted to Theory of Computing Systems); Earlier version appeared as A Tight Bound on Coordination Ratio, Technical Report 0100229, Department of Computer Science, University of California at Los Angeles (April 2001)

    Google Scholar 

  15. Koutsoupias, E., Papadimitriou, C.H.: Worst-case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Lücking, T., Mavronicolas, M., Monien, B., Rode, M., Spirakis, P., Vrto, I.: Which is theWorst-case Nash Equilibrium? In: 26th International Symposium on Mathematical Foundations of Computer Science (August 2003) (to appear)

    Google Scholar 

  17. Marshall, A., Olkin, I.: Theory of Majorization and Its Applications. Academic Press, Orlando (1979)

    MATH  Google Scholar 

  18. Mavronicolas, M., Spirakis, P.: The Price of Selfish Routing. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, July 2001, pp. 510–519 (2001)

    Google Scholar 

  19. McDiarmid, C.: “Concentration. In: Habib, M., McDiarmidt, C., Ramires-Alfonsin, J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics, vol. ch. 9, Springer, Heidelberg (1998)

    Google Scholar 

  20. Moulin, H., Vial, L.: Strategically Zero-Sum Games: The Class of Games whose Completely Mixed Equilibria Cannot be Improved Upon. International Journal of Game Theory 7(3/4), 201–221 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nash, J.F.: Equilibrium Points in N-Person Games. Proceedings of the National Academy of Sciences 36, 48–49 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nash, J.F.: Non-cooperative Games. Annals of Mathematics 54(2), 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  23. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  24. Papadimitriou, C.H.: Algorithms, Games and the Internet. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, July 2001, pp. 749–753 (2001)

    Google Scholar 

  25. Raghavan, T.E.S.: Completely Mixed Strategies in Bimatrix Games. Journal of London Mathematical Society 2(2), 709–712 (1970)

    MATH  MathSciNet  Google Scholar 

  26. Ross, S.M.: Stochastic Processes, 2nd edn. John Wiley & Sons, Inc., Chichester (1996)

    MATH  Google Scholar 

  27. Schuurman, P., Vredeveld, T.: Performance Guarantees of Load Search for Multiprocessor Scheduling. In: Proceedings of the 8th Conference on Integer Programming and Combinatorial Optimization, June 2001, pp. 370–382 (2001)

    Google Scholar 

  28. Shaked, M., Shanthikumar, J.G.: Stochastic Orders and Their Applications. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  29. Vetta, A.: Nash Equilibria in Competitive Societies, with Applications to Facility Location, Traffic Routing and Auctions. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, October 2002, pp. 416–425 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Spirakis, P. (2003). Extreme Nash Equilibria. In: Blundo, C., Laneve, C. (eds) Theoretical Computer Science. ICTCS 2003. Lecture Notes in Computer Science, vol 2841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45208-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45208-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20216-5

  • Online ISBN: 978-3-540-45208-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics