A Gambling Game Arising in the Analysis of Adaptive Randomized Rounding

  • Richard M. Karp
  • Claire Kenyon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2764)


Let y be a positive real number and let {Xi} be an infinite sequence of Bernoulli random variables with the following property: in every realization of the random variables, \(\sum_{i=1}^{\infty} E[X_i|X_1,X_2,\cdots, X_{i-1}] \leq y\). We specify a function F(x,y) such that, for every positive integer x and every positive real y, \(P(\sum_{i=1}^{\infty} X_i \geq x) \leq F(x,y)\); moreover, for every x and y, F(x,y) is the best possible upper bound. We give an interpretation of this stochastic process as a gambling game, characterize optimal play in this game, and explain how our results can be applied to the analysis of multi-stage randomized rounding algorithms, giving stronger results than can be obtained using the traditional Hoeffding bounds and martingale tail inequalities.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Noy, A., Guha, S., Naor, J(S.), Schieber, B.: Multicasting in Heterogeneous Networks. SIAM J. Comput. 30(2), 347–358 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Elkin, M., Kortsarz, G.: Sublogarithmic Approximation for Telephone Multicast: Path out of Jungle. In: SODA (2003) ( to appear)Google Scholar
  3. 3.
    Karp, R.M., Leighton, F.T., Thompson, C.D., Vazirani, U.V., Vazirani, V.V.: Global wire routing in two-dimensional arrays. Algorithmica 2, 113–129 (1987)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Leighton, F.T., Lu, C.-J., Rao, S.B., Srinivasan, A.: New Algorithmic Aspects of the Local Lemma with Applications to Routing and Partitioning. SIAM Journal on Computing 31, 626–641 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ravi, R.: Rapid Rumor Ramification: Approximation the minimum broadcast time. In: 35th IEEE Symposium on Foundations of Computer Science, FOCS (1994)Google Scholar
  7. 7.
    Srinivasan, A.: An Extension of the Lovasz Local Lemma and its Applications to Integer Programming. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 6–15 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Richard M. Karp
    • 1
  • Claire Kenyon
    • 2
  1. 1.UC Berkeley and ICSI 
  2. 2.Ecole Polytechnique and IUF 

Personalised recommendations