Skip to main content

Abstract

Min-entropy is a statistical measure of the amount of randomness that a particular distribution contains. In this paper we investigate the notion of computational min-entropy which is the computational analog of statistical min-entropy. We consider three possible definitions for this notion, and show equivalence and separation results for these definitions in various computational models.

We also study whether or not certain properties of statistical min-entropy have a computational analog. In particular, we consider the following questions:

  • 1. Let X be a distribution with high computational min-entropy. Does one get a pseudo-random distribution when applying a “randomness extractor” on X?

  • 2. Let X and Y be (possibly dependent) random variables. Is the computational min-entropy of (X,Y) at least as large as the computational min-entropy of X?

  • 3. Let X be a distribution over {0,1}n that is “weakly unpredictable” in the sense that it is hard to predict a constant fraction of the coordinates of X with a constant bias. Does X have computational min-entropy Ω(n)?

We show that the answers to these questions depend on the computational model considered. In some natural models the answer is false and in others the answer is true. Our positive results for the third question exhibit models in which the “hybrid argument bottleneck” in “moving from a distinguisher to a predictor” can be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28, 270–299 (1984); Preliminary version in STOC 1982

    Google Scholar 

  2. Yao, A.C.: Theory and applications of trapdoor functions. In: 23rd FOCS, pp. 80–91 (1982)

    Google Scholar 

  3. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal on Computing 13, 850–864 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28, 1364–1396 (1999) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  5. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    MATH  MathSciNet  Google Scholar 

  6. Goldberg, A.V., Sipser, M.: Compression and ranking. SIAM Journal on Computing 20, 524–536 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. von Neumann, J.: Zur theorie der gesellschaftsspiele. Math. Ann. 100, 295–320 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  8. Klivans, A.R., van Melkebeek, D.: Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput. 31, 1501–1526 (2002) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  9. Miltersen, P.B., Vinodchandran, N.V.: Derandomizing Arthur-Merlin games using hitting sets. In: 40th FOCS, pp. 71–80 (1999)

    Google Scholar 

  10. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudorandom generator. In: 42nd FOCS, pp. 648–657 (2001)

    Google Scholar 

  11. Trevisan, L., Vadhan, S.: Extracting randomness from samplable distributions. In: 41st FOCS, pp. 32–42 (2000)

    Google Scholar 

  12. Nisan, N.: Extracting randomness: How and why: A survey. In: Conference on Computational Complexity, pp. 44–58 (1996)

    Google Scholar 

  13. Nisan, T.-S.: Extracting randomness: A survey and new constructions. JCSS: Journal of Computer and System Sciences 58 (1999)

    Google Scholar 

  14. Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin of the European Association for Theoretical Computer Science 77, 67–95 (2002), Also available on, http://www.wisdom.weizmann.ac.il/~ronens

  15. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: 21st STOC, pp. 12–24 (1989)

    Google Scholar 

  16. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR lemma. JCSS: Journal of Computer and System Sciences 62 (2001); Preliminary version in STOC 1999. Also published as ECCC Report TR98-074

    Google Scholar 

  17. Trevisan, L.: Construction of extractors using pseudo-random generators. In: 31st STOC, pp. 141–148 (1999)

    Google Scholar 

  18. Raz, R., Reingold, O., Vadhan, S.: Extracting all the randomness and reducing the error in trevisan’s extractors. JCSS: Journal of Computer and System Sciences 65 (2002); Preliminary version in STOC 1999

    Google Scholar 

  19. Impagliazzo, R., Shaltiel, R., Wigderson, A.: Extractors and pseudo-random generators with optimal seed length. In: ACM (ed.) 32nd STOC, pp. 1–10 (2000)

    Google Scholar 

  20. Ta-Shma, A., Zuckerman, D., Safra, S.: Extractors from Reed-Muller codes. In: IEEE (ed.) 42nd FOCS, pp. 638–647 (2001)

    Google Scholar 

  21. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity 3, 307–318 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: 29th STOC, 220–229 (1997)

    Google Scholar 

  23. Nisan, N., Wigderson, A.: Hardness vs. randomness. J. Comput. System Sci. 49, 149–167 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nisan, N.: Pseudorandom generators for space-bounded computations. In: ACM (ed.) 22nd STOC, pp. 204–212 (1990)

    Google Scholar 

  25. Impagliazzo, R., Nisan, N., Wigderson, A.: Pseudorandomness for network algorithms. In: ACM (ed.) 26th STOC, pp. 356–364 (1994)

    Google Scholar 

  26. Bar-Yossef, Z., Reingold, O., Shaltiel, R., Trevisan, L.: Streaming computation of combinatorial objects. In: Conference on Computational Complexity (CCC), vol. 17 (2002)

    Google Scholar 

  27. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer and System Sciences 52, 43–52 (1996); Preliminary version in STOC 1993

    Article  MATH  MathSciNet  Google Scholar 

  28. Saks, M.: Randomization and derandomization in space-bounded computation. In: Conference on Computational Complexity (CCC), pp. 128–149 (1996)

    Google Scholar 

  29. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science 43, 169–188 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barak, B., Shaltiel, R., Wigderson, A. (2003). Computational Analogues of Entropy. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds) Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques. RANDOM APPROX 2003 2003. Lecture Notes in Computer Science, vol 2764. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45198-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45198-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40770-6

  • Online ISBN: 978-3-540-45198-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics