Skip to main content

Efficient CNF Encoding of Boolean Cardinality Constraints

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2833))

Abstract

In this paper, we address the encoding into CNF clauses of Boolean cardinality constraints that arise in many practical applications. The proposed encoding is efficient with respect to unit propagation, which is implemented in almost all complete CNF satisfiability solvers. We prove the practical efficiency of this encoding on some problems arising in discrete tomography that involve many cardinality constraints. This encoding is also used together with a trivial variable elimination in order to re-encode parity learning benchmarks so that a simple Davis and Putnam procedure can solve them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barcucci, E., Dellungo, A., Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from horizontal and vertical projections. Theoret. Comput. Sci, pp. 321– 347 (1996)

    Google Scholar 

  2. Beldiceanu, N., Contjean, E.: Introducing global constraints in CHIP. Mathematical and Computer Modelling 12, 97–123 (1994)

    Article  Google Scholar 

  3. Boufkhad, Y., Dubois, O., Nivat, M.: Reconstructing (h, v)-convex 2-dimensional patterns of objects from approximate horizontal and vertical projections. Theoret. Comput. Sci. 290(3), 1647–1664 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chang, S.: The reconstruction of binary patterns from their projections. Comm. ACM, 21–25 (1971)

    Google Scholar 

  5. Cosytec, S.A.: CHIP C++ Library. Reference Manual, Version 5.4 (October 2001)

    Google Scholar 

  6. Crawford, J.: Instances of learning parity function, http://www.intellektik.informatik.tudarmstadt.de/SATLIB/Benchmarks/SAT/DIMACS/PARITY/descr.html

  7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5, 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dellungo, A.: Polyominoes defined by two vectors. Theoret. Comput. Sci. 127, 187–198 (1994)

    Article  MathSciNet  Google Scholar 

  10. Gardner, R.G., Gritzmann, P., Prangenberg, D.: Ont the computational complexity of reconstructing lattice sets from their x-rays. Discrete Mathematics, 45–71 (1999)

    Google Scholar 

  11. Gent, P.: Arc consistency in sat. In: Proceedings of the Fifteenth European Conference on Artificial Intelligence, (ECAI 2002) (2002)

    Google Scholar 

  12. Johnson, D., Trick, M. (eds.): DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence (1996)

    Google Scholar 

  13. Kuba, A.: The reconstruction of two-directionaly connected binary patterns. Comput. Graph. Image Process 27, 249–265 (1984)

    Article  Google Scholar 

  14. Li, C.: Integrating equivalency reasoning into davis-putnam procedure. In: AAAI: 17th National Conference on Artificial Intelligence. AAAI / MIT Press (2000)

    Google Scholar 

  15. Moskewicz, M., Madigan, C., Zhao, L., Zhang, L., Malik, S.: Chaff: Engineering an efficient sat solver. In: 39th Design Automation Conference (June 2001)

    Google Scholar 

  16. Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: AAAI 1996, pp. 209–215 (1996)

    Google Scholar 

  17. Ryser, H.: Combinatorial Mathematics. The Carus Mathematical Monographs (1963)

    Google Scholar 

  18. Selman, B., Kautz, H.A., Mcallester, D.A.: Ten challenges in propositional reasoning and search. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 50–54 (1997)

    Google Scholar 

  19. Wang, Y.: Characterization of binary patterns and their projections. IEEE Trans. Compt.  C-24, 1032–1035 (1975)

    Article  MATH  Google Scholar 

  20. Warners, J., van Maaren, H.: A two phase algorithm for solving a class of hard satisfiability problems. Op. Res. Lett. 23(3-5), 81–88 (1999)

    Article  Google Scholar 

  21. Woeginger, G.: The reconstruction of polyominoes from their orthogonal projections, tech. rep., TU Graz (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bailleux, O., Boufkhad, Y. (2003). Efficient CNF Encoding of Boolean Cardinality Constraints. In: Rossi, F. (eds) Principles and Practice of Constraint Programming – CP 2003. CP 2003. Lecture Notes in Computer Science, vol 2833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45193-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45193-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20202-8

  • Online ISBN: 978-3-540-45193-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics