Advertisement

Boosting Chaff’s Performance by Incorporating CSP Heuristics

  • Carlos Ansótegui
  • Jose Larrubia
  • Felip Manyà
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2833)

Abstract

Identifying CSP variables in SAT encodings of combinatorial problems allows one to incorporate CSP-like variable selection heuristics into SAT solvers. We show that such heuristics turn out to be more powerful than the best performing state-of-the-art variable selection heuristics for SAT. In particular, we define five novel CSP-like variable selection heuristics for Chaff —one of the most modern, powerful and robust SAT solvers— and provide experimental evidence that Chaff augmented with those heuristics outperforms the original Chaff solver one order of magnitude on difficult SAT-encoded problems like random binary CSPs, pigeon hole, and graph coloring.

Keywords

Domain Size Constraint Satisfaction Problem Graph Coloring Boolean Variable Direct Encode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansótegui, C., Béjar, R., Cabiscol, A., Li, C.M., Manyà, F.: Resolution methods for many-valued CNF formulas. In: Fifth International Symposium on the Theory and Applications of Satisfiability Testing, SAT 2002, Cincinnati, USA, pp. 156–163 (2002)Google Scholar
  2. 2.
    Ansótegui, C., Larrubia, J., Li, C.M., Manyà, F.: Mv-Satz: A SAT solver for many-valued clausal forms. In: 4th International Conference Journées de L’Informatique Messine, JIM 2003, Metz, France (2003)Google Scholar
  3. 3.
    Ansótegui, C., Manyà, F., Béjar, R., Gomes, C.: Solving many-valued SAT encodings with local search. In: Proceedings of the Workshop on Probabilistics Approaches in Search, 18th National Conference on Artificial Intelligence, AAAI 2002, Edmonton, Canada, 2002 (2002)Google Scholar
  4. 4.
    Bayardo, R.J., Schrag, R.C.: Using CSP look-back techniques to solve realworld SAT instances. In: Proceedings of the 14th National Conference on Artificial Intelligence, AAAI 1997, Providence, RI, USA, pp. 203–208. AAAI Press, Menlo Park (1997)Google Scholar
  5. 5.
    Beckert, B., Hähnle, R., Manyà, F.: Transformations between signed and classical clause logic. In: Proceedings, International Symposium on Multiple-Valued Logics, ISMVL 1999, Freiburg, Germany, pp. 248–255. IEEE Press, Los Alamitos (1999)Google Scholar
  6. 6.
    Beckert, B., Hähnle, R., Manyà, F.: The SAT problem of signed CNF formulas. In: Basin, D., et al. (eds.) Labelled Deduction. Applied Logic Series, vol. 17, pp. 61–82. Kluwer, Dordrecht (2000)Google Scholar
  7. 7.
    Béjar, R., Cabiscol, A., Fernández, C., Manyà, F., Gomes, C.P.: Capturing structure with satisfiability. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 137–152. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Béjar, R., Hähnle, R., Manyà, F.: A modular reduction of regular logic to classical logic. In: Proceedings, 31st International Symposium on Multiple-Valued Logics (ISMVL), Warsaw, Poland, pp. 221–226. IEEE CS Press, Los Alamitos (2001)CrossRefGoogle Scholar
  9. 9.
    Béjar, R., Manyà, F.: A comparison of systematic and local search algorithms for regular CNF formulas. In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 22–31. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Béjar, R., Manyà, F.: Solving the round robin problem using propositional logic. In: Proceedings of the 17th National Conference on Artificial Intelligence, AAAI-2000, Austin, TX, USA, pp. 262–266. AAAI Press, Menlo Park (2000)Google Scholar
  11. 11.
    Bessière, C., Régin, J.: Refining the basic constraint propagation algorithm. In: Proceedings of IJCAI 2001, pp. 309–315 (2001)Google Scholar
  12. 12.
    Culberson, J.: Graph coloring page: The flat graph generator (1995), See http://web.cs.ualberta.ca/~joe/Coloring/Generators/flat.html
  13. 13.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5, 394–397 (1962)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Génisson, R., Jégou, P.: Davis and Putnam were already checking forward. In: Proceedings of the 12th European Conference on Artificial Intelligence (ECAI), Budapest, Hungary, pp. 180–184 (1996)Google Scholar
  16. 16.
    Gent, P.: Arc consistency in SAT. In: Proceedings of the 15th European Conference on Artificial Intelligence (ECAI), Lyon, France (2002)Google Scholar
  17. 17.
    Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence 14, 263–313 (1980)CrossRefGoogle Scholar
  18. 18.
    Hoos, H.: SATLIB: A collection of SAT tools and data (1999), See http://www.satlib.org
  19. 19.
    Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., Selman, B., Stickel, M.: Balance and filtering in structured satisfiable problems. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle/WA, USA, pp. 351–358 (2001)Google Scholar
  20. 20.
    Kautz, H.A., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic search. In: Proceedings of the 14th National Conference on Artificial Intelligence, AAAI 1996, Portland, OR, USA, pp. 1194–1201. AAAI Press, Menlo Park (1996)Google Scholar
  21. 21.
    Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI 1997, Nagoya, Japan, pp. 366–371. Morgan Kaufmann, San Francisco (1997)Google Scholar
  22. 22.
    Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 341–355. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Manyà, F., Béjar, R., Escalada-Imaz, G.: The satisfiability problem in regular CNF-formulas. Soft Computing: A Fusion of Foundations, Methodologies and Applications 2(3), 116–123 (1998)CrossRefGoogle Scholar
  24. 24.
    Marques-Silva, J.P., Guerra, L.: Algorithms for satisfiability in combinational circuits based on backtrack search and recursive learning. In: Proc. of XII Symposium on Integrated Circuits and Systems Design (SBCCI) (1999)Google Scholar
  25. 25.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient sat solver. In: 39th Design Automation Conference (2001)Google Scholar
  26. 26.
    Sabin, D., Freuder, E.: Contradicting conventional wisdom in constraint satisfaction. In: Proceedings of ECAI 1994, pp. 125–129 (1994)Google Scholar
  27. 27.
    Selman, B., Kautz, H.A.: Domain-independent extensions of GSAT: Solving large structured satisfiability problems. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI 1993, Chambery, France, pp. 290–295. Morgan Kaufmann, San Francisco (1993)Google Scholar
  28. 28.
    Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the 12th National Conference on Artificial Intelligence, AAAI 1994, Seattle, WA, USA, pp. 337–343. AAAI Press, Menlo Park (1994)Google Scholar
  29. 29.
    Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Proceedings of the 10th National Conference on Artificial Intelligence, AAAI 1992, San Jose, CA, USA, pp. 440–446. AAAI Press, Menlo Park (1992)Google Scholar
  30. 30.
    Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)CrossRefGoogle Scholar
  31. 31.
    Smith, B., Dyer, M.: Locating the phase transition in binary constraint satisfaction problems. Artificial Intelligence 81, 155–181 (1996)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Velev, M., Bryant, R.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and vliw microprocessors. In: 38th Design Automation Conference (DAC 2001) (2001)Google Scholar
  33. 33.
    Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, p. 441. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Carlos Ansótegui
    • 1
  • Jose Larrubia
    • 1
  • Felip Manyà
    • 1
  1. 1.Computer Science DepartmentUniversitat de LleidaLleidaSpain

Personalised recommendations