Maintaining Longest Paths Incrementally

  • Laurent Michel
  • Pascal Van Hentenryck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2833)


Modeling and programming tools for neighborhood search often support invariants, i.e., data structures specified declaratively and automatically maintained incrementally under changes. This paper considers invariants for longest paths in directed acyclic graphs, a fundamental abstraction for many applications. It presents bounded incremental algorithms for arc insertion and deletion which run in O(||δ|| log ||δ||) and O(||δ||) respectively, where ||δ|| is a measure of the change in the input and output. The paper also shows how to generalize the algorithm to various classes of multiple insertions/deletions encountered in scheduling applications. Preliminary experimental results show that the algorithms behave well in practice.


Local Search Directed Acyclic Graph Neighborhood Search Jobshop Schedule Longe Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts, E., van Laarhoven, P., Lenstra, J., Ulder, N.: A computational study of local search algorithms for job shop scheduling. ORSA Journal on Computing 6, 113–125 (1994)Google Scholar
  2. 2.
    Alpern, B., Hoover, R., Rosen, B., Sweeney, P., Zadeck, K.: Incremental Evaluation of Computational Circuits. In: SODA 1990 (1990)Google Scholar
  3. 3.
    Codognet, C., Diaz, D.: Yet Another Local Search Method for Constraint Solving. In: AAAI Fall Symposium on Using Uncertainty within Computation, Cape Cod, MA (2001)Google Scholar
  4. 4.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. In: KR 1989 (1989)Google Scholar
  5. 5.
    Dell’Amico, M., Trubian, M.: Applying Tabu Search to the Job-Shop Scheduling Problem. Annals of Operations Research 41, 231–252 (1993)zbMATHCrossRefGoogle Scholar
  6. 6.
    Di Gaspero, L., Schaerf, A.: Optimization Software Class Libraries. In: chapter Writing Local Search Algorithms Using EasyLocal++. Kluwer, Dordrecht (2002)Google Scholar
  7. 7.
    Galinier, P., Hao, J.-K.: A General Approach for Constraint Solving by Local Search. In: CP-AI-OR 2000, Paderborn, Germany (March 2000)Google Scholar
  8. 8.
    Laburthe, F., Caseau, Y.: SALSA: A Language for Search Algorithms. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, p. 310. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Michel, L., Van Hentenryck, P.: A Constraint-Based Architecture for Local Search. In: OOPLSA 2002, Seattle, WA (November 1992)Google Scholar
  10. 10.
    Michel, L., Van Hentenryck, P.: Localizer. Constraints 5, 41–82 (2000)CrossRefGoogle Scholar
  11. 11.
    Michel, L., Van Hentenryck, P.: Localizer++: An Open Library for Local Search. Technical Report CS-01-02, Brown University (2001)Google Scholar
  12. 12.
    Michel, L., Van Hentenryck, P.: A simple tabu search for warehouse location. European Journal on Operations Research (2001) (to appear)Google Scholar
  13. 13.
    Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Management Science 42(6), 797–813 (1996)zbMATHCrossRefGoogle Scholar
  14. 14.
    Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the shortest-path problem. Journal of Algorithms 21, 267–305 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ramalingam, G., Reps, T.: On the computational complexity of dynamic graph problems. Theoretical Computer Science 158, 233–277 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ramalingam, G., Song, J., Joscovicz, L., Miller, R.E.: Solving difference constraints incrementally. Algorithmica 23, 261–275 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Reps, T.: Optimal-Time Incremental Semantic Analysis for Syntax-Directed Editors. In: POPL 1982 (1982)Google Scholar
  18. 18.
    Shaw, P., De Backer, B., Furnon, V.: Improved local search for CP toolkits. Annals of Operations Research 115, 31–50 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tarjan, R.: Amortized Computational Complexity. SIAM Journal of Algebraic Discrete Methods 6, 306–318 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Voss, S., Woodruff, D.: Optimization Software Class Libraries. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  21. 21.
    Voudouris, C., Dorne, R., Lesaint, D., Liret, A.: iOpt: A Software Toolkit for Heuristic Search Method. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, p. 716. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Walser, J.: Integer Optimization by Local Search. Springer, Heidelberg (1998)Google Scholar
  23. 23.
    Werner, F., Winkler, A.: Insertion techniques for the heuristic solution of the job-shop problem. Discrete Applied Mathematics 58(2), 191–211 (1995)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Laurent Michel
    • 1
  • Pascal Van Hentenryck
    • 2
  1. 1.University of ConnecticutStorrsUSA
  2. 2.Brown UniversityProvidenceUSA

Personalised recommendations