Advertisement

Generic SBDD Using Computational Group Theory

  • Ian P. Gent
  • Warwick Harvey
  • Tom Kelsey
  • Steve Linton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2833)

Abstract

We introduce a novel approach for symmetry breaking by dominance detection (SBDD). The essence of SBDD is to perform ‘dominance checks’ at each node in a search tree to ensure that no symmetrically equivalent node has been visited before. While a highly effective technique for dealing with symmetry in constraint programs, SBDD forces a major overhead on the programmer, of writing a dominance checker for each new problem to be solved. Our novelty here is an entirely generic dominance checker. This in itself is new, as are the algorithms to implement it. It can be used for any symmetry group arising in a constraint program. A constraint programmer using our system merely has to define a small number (typically 2–6) of generating symmetries, and our system detects and breaks all resulting symmetries. Our dominance checker also performs some propagation, again generically, so that values are removed from variables if setting them would lead to a successful dominance check. We have implemented this generic SBDD and report results on its use. Our implementation easily handles problems involving 1036 symmetries, with only four permutations needed to direct the dominance checks during search.

Keywords

Symmetry Breaking Symmetry Group Search Tree Permutation Group Constraint Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Backofen, R., Will, S.: Excluding symmetries in constraint-based search. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 73–87. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Brown, C.A., Finkelstein, L., Purdom Jr., P.W.: Backtrack searching in the presence of symmetry. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 99–110. Springer, Heidelberg (1988)Google Scholar
  3. 3.
    Brown, C.A., Finkelstein, L., Purdom Jr., P.W.: Backtrack searching in the presence of symmetry. Nordic Journal of Computing 3(3), 203–219 (1996)MathSciNetGoogle Scholar
  4. 4.
    Colbourn, C.H., Dinitz, J.H. (eds.): The CRC handbook of combinatorial designs. CRC Press, Rockville (1996)zbMATHGoogle Scholar
  5. 5.
    Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Flener, P., Frisch, A.M., Hnich, B., Kızıltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking row and column symmetries in matrix models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 462–476. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–92. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.2 (2000), http://www.gap-system.org
  9. 9.
    Gent, I.P., Harvey, W., Kelsey, T.: Groups and constraints: Symmetry breaking during search. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 415–430. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Gent, I.P., Harvey, W., Kelsey, T., Linton, S.: Generic SBDD using computational group theory, Tech. Report APES-57a-2003, APES Research Group (January 2003), available from http://www.dcs.st-and.ac.uk/~apes/apesreports.html
  11. 11.
    Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In: Horn, W. (ed.) Proceedings of ECAI 2000, pp. 599–603. IOS Press, Amsterdam (2000)Google Scholar
  12. 12.
    Harvey, W.: Symmetry breaking and the social golfer problem. In: Flener, P., Pearson, J. (eds.) Proceedings, SymCon 2001: Symmetry in Constraints, pp. 9–16 (2001)Google Scholar
  13. 13.
    Harvey, W., Kelsey, T., Petrie, K.: Symmetry group generation for CSPs, Tech. Report APES-60-2003, APES Research Group (July 2003), available from http://www.dcs.st-and.ac.uk/~apes/apesreports.html
  14. 14.
    Van Hentenryck, P.: Constraint satisfaction in logic programming. Logic Programming Series. MIT Press, Cambridge (1989)Google Scholar
  15. 15.
    McDonald, I.: Symmetry breaking systems, Tech. Report APES-61-2003, APES Research Group (July 2003), available from http://www.dcs.st-and.ac.uk/~apes/apesreports.html
  16. 16.
    McDonald, I., Smith, B.: Partial symmetry breaking. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 431–445. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Puget, J.-F.: Symmetry breaking revisited. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 446–461. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Puget, J.-F.: Symmetry breaking revisited. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 446–461. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Seress, A.: Permutation group algorithms. Cambridge tracts in mathematics, vol. 152. Cambridge University Press, Cambridge (2002)Google Scholar
  20. 20.
    Wallace, M.G., Novello, S., Schimpf, J.: ECLiPSe: A platform for constraint logic programming. ICL Systems Journal 12(1), 159–200 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ian P. Gent
    • 1
  • Warwick Harvey
    • 2
  • Tom Kelsey
    • 1
  • Steve Linton
    • 1
  1. 1.School of Computer ScienceUniversity of St AndrewsSt Andrews, FifeUK
  2. 2.IC-ParcImperial College LondonLondonUK

Personalised recommendations