Advertisement

Periodic Constraint Satisfaction Problems: Polynomial-Time Algorithms

  • Hubie Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2833)

Abstract

We study a generalization of the constraint satisfaction problem (CSP), the periodic constraint satisfaction problem. An input instance of the periodic CSP is a finite set of “generating” constraints over a structured variable set that implicitly specifies a larger, possibly infinite set of constraints; the problem is to decide whether or not the larger set of constraints has a satisfying assignment. This model is natural for studying constraint networks consisting of constraints obeying a high degree of regularity or symmetry. Our main contribution is the identification of two broad polynomial-time tractable subclasses of the periodic CSP.

Keywords

Polynomial Time Constraint Satisfaction Problem Closure Property Constraint Network Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bulatov, A., Jeavons, P.: Tractable constraints closed under a binary operation. Technical Report PRG-TR-12-00, Oxford University (2000)Google Scholar
  2. 2.
    Bulatov, A.A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings of 43rd IEEE Symposium on Foundations of Computer Science, pp. 649–658 (2002)Google Scholar
  3. 3.
    Bulatov, A.A.: Malt’sev constraints are tractable. Technical Report PRGRR- 02-05, Oxford University (2002)Google Scholar
  4. 4.
    Bulatov, A.A., Krokhin, A.A., Jeavons, P.: Constraint satisfaction problems and finite algebras. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 272–282. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Bulatov, A.A., Krokhin, A.A., Jeavons, P.: The complexity of maximal constraint languages. In: ACM Symposium on Theory of Computing, pp. 667–674 (2001)Google Scholar
  6. 6.
    Cooper, M.C., Cohen, D.A., Jeavons, P.G.: Characterising tractable constraints. Artificial Intelligence 65(2), 347–361 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Constraint Satisfaction Problems. In: SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (2001)Google Scholar
  8. 8.
    Dalmau, V., Pearson, J.: Closure functions and width 1 problems. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 159–173. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Dalmau, V.: A new tractable class of constraint satisfaction problems. In: 6th International Symposium on Artificial Intelligence and Mathematics (2000)Google Scholar
  10. 10.
    Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, p. 310. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Freedman, M.: K-sat on groups and undecidability. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 572–576 (1998)Google Scholar
  13. 13.
    Höfting, F., Wanke, E.: Polynomial algorithms for minimum cost paths in periodic graphs. In: SODA, pp. 493–499 (1993)Google Scholar
  14. 14.
    Jeavons, P.: On the algebraic structure of combinatorial problems. Theoretical. Computer Science 200, 185–204 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jeavons, P., Cohen, D., Cooper, M.: Constraints, consistency, and closure. Articial Intelligence 101(1-2), 251–265 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jeavons, P., Cohen, D., Pearson, J.: Constraints and universal algebra. Annals of Mathematics and Artificial Intelligence 24(1-4), 51–67 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jeavons, P.G., Cohen, D.A., Gyssens, M.: A unifying framework for tractable constraints. In: Proceedings of 1st International Conference on Principles and Practice of Constraint Programming, pp. 276–291. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44, 527–548 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Marathe, M.V., Hunt III, H.B., Rosenkrantz, D.J., Stearns, R.E.: Theory of periodically specified problems: Complexity and approximability. In: Proc. 13th IEEE Conference on Computational Complexity (1998)Google Scholar
  20. 20.
    Marathe, M.V., Hunt III, H.B., Stearns, R.E., Radhakrishnan, V.: Approximation algorithms for pspace-hard hierarchically and periodically specified problems. SIAM Journal on Computing 27(5), 1237–1261 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Orlin, J.: The complexity of dynamic languages and dynamic optimization problems. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 218–227 (1981)Google Scholar
  22. 22.
    Pearson, J.K., Jeavons, P.G.: A survey of tractable constraint satisfaction problems. Technical report, Royal Holloway, University of London (1997)Google Scholar
  23. 23.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 216–226 (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hubie Chen
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations