Advertisement

Constraint-Based Optimization with the Minimax Decision Criterion

  • Craig Boutilier
  • Relu Patrascu
  • Pascal Poupart
  • Dale Schuurmans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2833)

Abstract

In many situations, a set of hard constraints encodes the feasible configurations of some system or product over which users have preferences. We consider the problem of computing a best feasible solution when the user’s utilities are partially known. Assuming bounds on utilities, efficient mixed integer linear programs are devised to compute the solution with minimax regret while exploiting generalized additive structure in a user’s utility function.

Keywords

Utility Function Hard Constraint Feasible State Preference Elicitation Utility Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacchus, F., Grove, A.: Graphical models for preference and utility. In: Proc. 11th Conf. on Uncertainty in AI, Montreal, pp. 3–10 (1995)Google Scholar
  2. 2.
    Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic, Orlando (1972)zbMATHGoogle Scholar
  3. 3.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. Journal of the ACM 44(2), 201–236 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boutilier, C.: A POMDP formulation of preference elicitation problems. In: Proc. 18th National Conf. on AI, Edmonton, pp. 239–246 (2002)Google Scholar
  5. 5.
    Boutilier, C., Bacchus, F., Brafman, R.I.: UCP-Networks: A directed graphical representation of conditional utilities. In: Proc. 17th Conf. on Uncertainty in AI, pp. 56–64 (2001)Google Scholar
  6. 6.
    Chajewska, U., Getoor, L., Norman, J., Shahar, Y.: Utility elicitation as a classification problem. In: Proc. 14th Conf. on Uncertainty in AI, Madison, WI, pp.79–88 (1998)Google Scholar
  7. 7.
    Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive utility elicitation. In: Proc. 17th National Conf. on AI, Austin, TX, pp. 363–369 (2000)Google Scholar
  8. 8.
    Chandru, V., Hooker, J.: Optimization Methods for Logical Inference. Wiley, N.Y (1999)Google Scholar
  9. 9.
    Dechter, R.: Bucket elimination: A unifying framework for probabilistic inference. In: Proc. Twelfth Conf. on Uncertainty in AI, Portland, OR, pp. 211–219 (1996)Google Scholar
  10. 10.
    Dyer, J.S.: Interactive goal programming. Management Science 19, 62–70 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    French, S.: Decision Theory. Halsted Press, New York (1986)zbMATHGoogle Scholar
  12. 12.
    Guestrin, C., Koller, D., Parr, R.: Max-norm projections for factored MDPs. In: Proc. 17th Intl. Joint Conf. on AI, Seattle, pp. 673–680 (2001)Google Scholar
  13. 13.
    Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-offs. Wiley, New York (1976)Google Scholar
  14. 14.
    Sabin, D., Weigel, R.: Product configuration frameworks—a survey. IEEE Intelligent Systems and their Applications 13(4), 42–49 (1998)CrossRefGoogle Scholar
  15. 15.
    Schiex, T., Fargie, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard and easy problems. In: Proc. 14th Intl. Joint Conf. on AI, Montreal, pp. 631–637 (1995)Google Scholar
  16. 16.
    Wang, T., Boutilier, C.: Incremental utility elicitation with the minimax regret decision criterion. In: Proc. 18th Intl. Joint Conf. on AI, Acapulco, Mexico (2003) (to appear)Google Scholar
  17. 17.
    White III, C.C., Sage, A.P., Dozono, S.: A model of multiattribute decision making and trade-off weight determination under uncertainty. IEEE Transactions on Systems, Man and Cybernetics 14(2), 223–229 (1984)MathSciNetGoogle Scholar
  18. 18.
    Schuurmans, D., Patrascu, R.: Direct value-approximation for factored MDPs. In: Advances in Neural Information Processing 14, pp. 1579–1586. MIT Press, Cambridge (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Craig Boutilier
    • 1
  • Relu Patrascu
    • 2
  • Pascal Poupart
    • 1
  • Dale Schuurmans
    • 2
  1. 1.Dept. of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations