Internet Traffic Engineering

  • O. Bonaventure
  • P. Trimintzios
  • G. Pavlou
  • B. Quoitin
  • A. Azcorra
  • M. Bagnulo
  • P. Flegkas
  • A. Garcia-Martinez
  • P. Georgatsos
  • L. Georgiadis
  • C. Jacquenet
  • L. Swinnen
  • S. Tandel
  • S. Uhlig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2856)

Abstract

Traffic engineering encompasses a set of techniques that can be used to control the flow of traffic in data networks. We discuss several of those techniques that have been developed during the last few years. Some techniques are focused on pure IP networks while others have been designed with emerging technologies for scalable Quality of Service (QoS) such as Differentiated Services and MPLS in mind. We first discuss traffic engineering techniques inside a single domain. We show that by using a non-linear programming formulation of the traffic engineering problem it is possible to meet the requirements of demanding customer traffic, while optimising the use of network resources, through the means of an automated provisioning system. We also extend the functionality of the traffic engineering system through policies. In the following, we discuss the techniques that can be used to control the flow of packets between domains. First, we briefly describe interdomain routing and the Border Gateway Protocol (BGP). Second, we summarise the characteristics of interdomain traffic based on measurements with two different Internet Service Providers. We show by simulations the limitations of several BGP-based traffic engineering techniques that are currently used on the Internet. Then, we discuss the utilisation of BGP to exchange QoS information between domains by using the QOS_NLRI attribute to allow BGP to select more optimum paths. Finally, we consider the multi-homing problem and analyse the current proposed IPv6 multi-homing solutions are analysed along with their impact on communication quality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., Xiao, X.: Overview and Principles of Internet Traffic Engineering. IETF, Informational RFC-3272 (May 2002)Google Scholar
  2. 2.
    Blake, S., et al.: An Architecture for Differentiated Services. IETF, Informational RFC-2475 (December 1998)Google Scholar
  3. 3.
    Rosen, E., Viswanathan, A., Callon, R.: Multi-protocol Label Switching Architecture. IETF, Standards Track RFC-3031 (January 2001)Google Scholar
  4. 4.
    Sloman, M.: Policy Driven Management For Distributed Systems. Journal of Network and Systems Management 2(4), 333–360 (1994)CrossRefGoogle Scholar
  5. 5.
    Rekhter, Y., Li, T.: A Border Gateway Protocol 4 (BGP-4). Internet Engineering Task Force, RFC 1771 (March 1995)Google Scholar
  6. 6.
    Internet Engineering Task Force (IETF). Traffic Engineering Working Group (tewg). information available atGoogle Scholar
  7. 7.
    Awduche, D., Malcolm, J., Agogbua, J., O’Dell, M., McManus, J.: Requirements for Traffic Engineering Over MPLS. IETF, Informational RFC-2702 (September 1999)Google Scholar
  8. 8.
    Le Faucheur, F., Lai, W. (eds.): Requirements for support of Diff-Serv-aware MPLS Traffic Engineering. Internet draft, <draft-ietf-tewg-diff-te-reqts-07.txt> (February 2003) (work in progress)Google Scholar
  9. 9.
    Katz, D., Kompella, K., Yeung, D.: Traffic Engineering Extensions to OSPF Version 2. IETF Internet draft, <draft-katz-yeung-ospf-traffic-10.txt> (June 2003) (work in progress)Google Scholar
  10. 10.
    Feldman, A., Rexford, J.: IP Network Configuration for Intra-domain Traffic Engineering. IEEE Network Magazine 15(5), 46–57 (2001)CrossRefGoogle Scholar
  11. 11.
    Aukia, P., Kodialam, M., Koppol, P.V., Lakshman, T.V., Sarin, H., Suter, B.: RATES: A Server for MPLS Traffic Engineering. IEEE Network Magazine 14(2), 34–41 (2000)CrossRefGoogle Scholar
  12. 12.
    Fortz, B., Thorup, M.: Internet Traffic Engineering by Optimizing OSPF Weights. In: Proc. of IEEE INFOCOM 2000, Israel, March 2000, pp. 519–528 (2000)Google Scholar
  13. 13.
    Kodialam, M., Lakshman, T.V.: Minimum Interference Routing with Applications to Traffic Engineering. In: Proc. of IEEE INFOCOM 2000, Israel, March 2000, pp. 884–893 (2000)Google Scholar
  14. 14.
    Trimintzios, P., Andrikopoulos, I., Pavlou, G., Flegkas, P., Georgatsos, P., Griffin, D., Goderis, D., T’Joens, Y., Georgiadis, L., Jacquenet, C., Egan, R.: A Management and Control Architecture for Providing IP Differentiated Services in MPLS-based Networks. IEEE Communications Magazine 39(5), 80–88 (2001)CrossRefGoogle Scholar
  15. 15.
    Nichols, K., Jacobson, V., Zang, L.: A Two-bit Differentiated Services Architecture for the Internet. IETF, Informational RFC-2638 (July 1999)Google Scholar
  16. 16.
    De Clercq, J., Van den Bosch, S., Couturier, A.: An Architecture for a Gradual Deployment of end-to-end QoS on an Internet-wide Scale. IETF Internet draft, <draft-declercq-vsn-arch-01.txt> (June 2003) (work in progress)Google Scholar
  17. 17.
    Pan, P., Hahne, E., Schulzrinne, H.: BGRP: A Tree-Based Aggregation Protocol for Inter-domain Reservations. Journal of Communications and Networks 2(2), 157–167 (2000)Google Scholar
  18. 18.
    Mykoniati, E., Charalampous, C., Georgatsos, P., Damilatis, T., Goderis, D., Trimintzios, P., Pavlou, G., Griffin, D.: Admission Control for Providing QoS in IP DiffServ Networks: the TEQUILA Approach. IEEE Communications Magazine 41(1), 38–44 (2003)CrossRefGoogle Scholar
  19. 19.
    Ventre, G. (ed.): Engineering of Future Internet Services (this book), vol. ch. 8. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice Hall, Englewood Cliffs (1993)Google Scholar
  21. 21.
    Mitra, D., Ramakrishnan, K.G.: A Case Study of Multi-service, Multi-priority Traffic Engineering Design for Data Networks. In: Proc. IEEE GLOBECOM 1999, Brazil, December 1999, pp. 1087–1093 (1999)Google Scholar
  22. 22.
    Mitra, D., Morrison, J.A., Ramakrishnan, K.G.: Virtual Private Networks: Joint Resource Allocation and Routing Design. In: Proc. IEEE INFOCOM 1999, USA, March 1999, pp. 884–893 (1999)Google Scholar
  23. 23.
    Van den Bosch, S., Poppe, F., De Neve, H., Petit, G.: Choosing the Objectives for Traffic Engineering in IP Backbone Networks based on Quality-of-Service Requirements. In: Crowcroft, J., Roberts, J., Smirnov, M.I. (eds.) QofIS 2000. LNCS, vol. 1922, pp. 129–140. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Suri, S., Waldvogel, M., Warkhede, P.R.: Profile-Based Routing: A New Framework for MPLS Traffic Engineering. In: Smirnov, M., Crowcroft, J., Roberts, J., Boavida, F. (eds.) QofIS 2001. LNCS, vol. 2156, pp. 138–157. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Mitra, D., Wang, Q.: Stochastic Traffic Engineering, with Applications to Network Revenue Management. In: Proc. of IEEE INFOCOM 2003, USA (March/April 2003)Google Scholar
  26. 26.
    Duffield, N., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K.K., Van der Merwe, J.: A Flexible Model for Resource Management in Virtual Private Networks. In: Proc. of ACM SIGCOMM 1999, Massachussetts, USA (August/September1999)Google Scholar
  27. 27.
    Kumar, A., Rastogi, R., Silberschatz, A., Yener, B.: Algorithms for Provisioning Virtual Private Networks in the Hose Model. In: Proc. of ACM SIGCOMM 2001, San Diego, USA (August 2001)Google Scholar
  28. 28.
    Jüttner, A., Szabó, I., Szentesi, Á.: On Bandwidth Efficiency of the Hose Resource Management Model in Virtual Private Networks. In: Proc. of IEEE INFOCOM 2003, USA, March/April (2003)Google Scholar
  29. 29.
    Wang, Z., Wang, Y., Zhang, L.: Internet Traffic Engineering without Full Mesh Overlaying. In: Proc. IEEE INFOCOM 2001, Alaska (April 2001)Google Scholar
  30. 30.
    Breitbart, Y., Garofalakis, M., Kumar, A., Rastogi, R.: Optimal Configuration of OSPF Aggregates. In: Proc. IEEE INFOCOM 2002, USA (June 2002)Google Scholar
  31. 31.
    Van Mieghem, P. (ed.): Quality of Service Routing (this book), vol. ch. 3. Springer, Heidelberg (2003)Google Scholar
  32. 32.
    Chen, S., Nahrstedt, K.: An Overview of Quality-of-Service Routing for the Next Generation High-Speed Networks: Problems and Solutions. IEEE Network Magazine 12(6), 64–79 (1998)CrossRefGoogle Scholar
  33. 33.
    Elwalid, A., Jin, C., Low, S.H., Widjaja, I.: MATE: MPLS Adaptive Traffic Engineering. In: Proc. IEEE INFOCOM 2001, Alaska, pp. 1300–1309 (April 2001)Google Scholar
  34. 34.
    Sridharan, A., Guérin, R.: Achieving Near-Optimal Traffic Engineering Solutions for Current OSPF/IS-IS Networks. In: Proc. of IEEE INFOCOM 2003. USA (March/April 2003)Google Scholar
  35. 35.
    Cao, Z., Wang, Z., Zegura, E.: Performance of Hashing-based Schemes for Internet Load Balancing. In: Proc. of IEEE INFOCOM 2000, Israel, pp. 332–341 (March 2000)Google Scholar
  36. 36.
    Trimintzios, P., Flegkas, P., Pavlou, G.: Policy-driven Traffic Engineering for Intra-domain Quality of Service Provisioning. In: Stiller, B., Smirnow, M., Karsten, M., Reichl, P. (eds.) QofIS 2002 and ICQT 2002. LNCS, vol. 2511, pp. 179–193. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  37. 37.
    Boyle, J., Gill, V., Hannan, A., Cooper, D., Awduche, D., Christian, B., Lai, W.S.: Applicability Statement for Traffic Engineering with MPLS. IETF, Informational RFC-3346 (August 2002)Google Scholar
  38. 38.
    Goderis, D., et al.: Service Level Specification Semantics and Parameters. Internet draft, <draft-tequila-sls-01.txt> (December 2001) (work in progress), available at http://www.ist-tequila.org/sls
  39. 39.
    Feldmann, A., Greenberg, A., Lund, C., Reingold, N., Rexford, J., True, F.: Deriving Traffic Demands for Operational IP Networks: Methodology and Experience. IEEE/ACM Transactions on Networking (TON) 9(3), 265–279 (2001)CrossRefGoogle Scholar
  40. 40.
    Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic Matrices Estimation: Existing Techniques and Future Directions. In: Proc. of ACM SIGCOMM 2002, Pittsburgh, USA (August 2002)Google Scholar
  41. 41.
    Papagiannaki, K., Zhang, Z.-L., Taft, N., Diot, C.: Long-Term Forecasting of Internet Backbone Traffic: Observations and Initial Models. In: Proc. of IEEE INFOCOM 2003, USA (March/April 2003)Google Scholar
  42. 42.
    Triminztios, P., Baugé, T., Pavlou, G., Flegkas, P., Egan, R.: Quality of Service Provisioning through Traffic Engineering with Applicability to IP-based Production Networks. Computer Communications Journal 26(8), 845–860 (2003)CrossRefGoogle Scholar
  43. 43.
    Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)MATHGoogle Scholar
  44. 44.
    Wang, Z., Crowcroft, J.: Quality of Service Routing for Supporting Multimedia Applications. IEEE J. Selected Areas in Communications (JSAC) 14(7), 1128–1234 (1996)Google Scholar
  45. 45.
    Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an internetwork. In: Proc. of IEEE INFOCOM 1996, USA, March 1996, pp. 594–602 (1996)Google Scholar
  46. 46.
    Flegkas, P., Trimintzios, P., Pavlou, G.: A Policy-based Quality of Service Management Architecture for IP DiffServ Networks. IEEE Network Magazine 16(2), 50–56 (2002)CrossRefGoogle Scholar
  47. 47.
    Yavatkar, R., Pendarakis, D., Guérin, R.: A Framework for Policy Based Admission Control. IETF, Informational RFC-2753 (January 2000)Google Scholar
  48. 48.
    Flegkas, P., Trimintzios, P., Pavlou, G., Andrikopoulos, I., Cavalcanti, C.: On Policy-based Extensible Hierarchical Network Management in QoS-enabled IP Networks. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp. 230–246. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  49. 49.
    Strassner, J., Moore, B., Moats, R., Ellesson, E.: Policy Core LDAP Schema. IETF Internet draft, <draft-ietf-policy-core-schema-16.txt> (October 2002) (work in progress)Google Scholar
  50. 50.
    Moore, B., Ellesson, E., Strassner, J., Westerinen, A.: Policy Core Information Model – Version 1 Specification. IETF, Standards Track RFC-3060 (February 2001)Google Scholar
  51. 51.
    Rekhter, Y., Li, T.: A border gateway protocol 4 (bgp-4). Internet draft, draft-ietf-idr-bgp4-17.txt (May 2002) (work in progress)Google Scholar
  52. 52.
    Stewart, J.: BGP4: interdomain routing in the Internet. Addison Wesley, Reading (1999)Google Scholar
  53. 53.
    Subramanian, L., Agarwal, S., Rexford, J., Katz, R.: Characterizing the internet hierarchy from multiple vantage points. In: INFOCOM 2002 (June 2002)Google Scholar
  54. 54.
    Bartholomew, S.: The art of peering. BT Technology Journal 18(3) (July 2000)Google Scholar
  55. 55.
    Cisco. NetFlow services and applications. White paper (1999), available from http://www.cisco.com/warp/public/732/netflow
  56. 56.
    Fang, W., Peterson, L.: Inter-AS traffic patterns and their implications. In: IEEE Global Internet Symposium (December 1999)Google Scholar
  57. 57.
    Pan, P., Hahne, E., Schulzrinne, H.: BGRP: A Tree-Based Aggregation Protocol for Inter-domain Reservations. Journal of Communications and Networks 2(2) (June 2000)Google Scholar
  58. 58.
    Huston, G.: Analyzing the Internet’s BGP routing table. Internet Protocol Journal 4(1) (2001)Google Scholar
  59. 59.
    Kleinrock, L., Naylor, W.: On measured behavior of the ARPA network. In: AFIS Proceedings, 1974 National Computer Conference, vol. 43, pp. 767–780. John Wiley & Sons, Chichester (1974)Google Scholar
  60. 60.
    Claffy, K., Braun, H., Polyzos, G.: Traffic characteristics of the T1 NSFNET backbone. In: INFOCOM 1993 (1993)Google Scholar
  61. 61.
    McManus, P.: A passive system for server selection within mirrored resource environments using as path length heuristics (April 1999), Available from http://www.gweep.net/~mcmanus/proximate.pdf
  62. 62.
    Awduche, D., Elmalid, A., Widjaja, I., Xiao, X.: A framework for Internet traffic engineering. Internet draft, draft-ietf-tewg-framework-05.txt (May 2001) (work in progress)Google Scholar
  63. 63.
    Quoitin, B., Uhlig, S., Pelsser, C., Swinnen, L., Bonaventure, O.: Interdomain traffic engineering with bgp. IEEE Communications Magazine (May 2003)Google Scholar
  64. 64.
    University of Oregon. Route-views, Available from http://antc.uoregon.edu/route-views
  65. 65.
    Broido, A., Nemeth, E., Claffy, K.: Internet expansion, refinement and churn. European Transactions on Telecommunications (January 2002)Google Scholar
  66. 66.
    Ishiguro, K.: Gnu zebra 0.92a, Available from http://www.zebra.org
  67. 67.
    Bellovin, S., Bush, R., Griffin, T., Rexford, J.: Slowing routing table growth by filtering based on address allocation policies (June 2001), Preprint available from http://www.research.att.com/~jrex
  68. 68.
    Uhlig, S., Bonaventure, O., Quoitin, B.: Interdomain Traffic Engineering with minimal BGP Configurations. In: Proc. of the 18th International Teletraffic Congress, Berlin (September 2003)Google Scholar
  69. 69.
    Borthick, S.: Will route control change the internet? Business Communications Review (September 2002)Google Scholar
  70. 70.
    Fortz, B., Rexford, J., Thorup, M.: Traffic engineering with traditional IP routing protocols. IEEE Communications Magazine (October 2002)Google Scholar
  71. 71.
    Griffin, T., Wilfong, G.: Analysis of the MED oscillation problem in BGP. In: ICNP 2002 (2002)Google Scholar
  72. 72.
    Tyan, H.-Y.: Design, Realization and Evaluation of a component-based compositional software architecture for network simulation. PhD thesis, The Ohio State University (2002)Google Scholar
  73. 73.
    Premore, B.J.: Ssf implementations of bgp-4 (2001), available from http://www.cs.dartmouth.edu/~beej/bgp/
  74. 74.
    Cowie, J.H., Nicol, D.M., Ogielski, T.: Modeling the Global Internet. Computing in Science & Engineering (1), 42–50 (1999)CrossRefGoogle Scholar
  75. 75.
    Griffin, T., Presmore, B.: An experimental analysis of BGP convergence time. In: ICNP 2001, pp. 53–61. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  76. 76.
    Mao, Z.M., Govindan, R., Varghese, G., Katz, R.: Route flap damping exacerbates internet routing convergence. In: ACM SIGCOMM 2002 (2002)Google Scholar
  77. 77.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-Law Relationships of the Internet Topology. In: ACM SIGCOMM (September 1999)Google Scholar
  78. 78.
    Tangmunarunkit, H., Govindan, R., Jamin, S.: Network Topology Generators: Degree-Based vs Structural. In: ACM SIGCOMM (2002)Google Scholar
  79. 79.
    Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: An Approach to Universal Topology Generation. In: MASCOTS 2001 (August 2001)Google Scholar
  80. 80.
    Barábasi, A.L., Albert, R.: Emergence of Scaling in Random Networks. Sciences (286), 509–512 (1999)CrossRefGoogle Scholar
  81. 81.
    Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Review of Modern Physics, 47–97 (January 2002)Google Scholar
  82. 82.
    Demichelis, C., Chimento, P.: IP Packet Delay Variation Metric for IPPM. Internet Engineering Task Force, RFC3393 (August 2002)Google Scholar
  83. 83.
    Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture for Differentiated Services. Internet Engineering Task Force, RFC 2475 (December 1998)Google Scholar
  84. 84.
    Xiao, L., Lui, K., Wang, J., Nahrstedt, K.: QoS extensions to BGP. In: ICNP 2002, Paris, France (November 2002)Google Scholar
  85. 85.
    Cristallo, G., Jacquenet, C.: Providing Quality of Service Indication by the BGP-4 Protocol: the QOS NLRI Attribute. Internet draft, draft-jacquenet-qosnlri- 04 (September 2002) (work in progress)Google Scholar
  86. 86.
    Walton, D., Cook, D., Retana, A., Scudder, J.: Advertisement of multiple paths in BGP. Internet draft, draft-walton-bgp-add-paths-01.txt (November 2002) (work in progress)Google Scholar
  87. 87.
    Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification. Internet Engineering Task Force, RFC 2460 (December 1998)Google Scholar
  88. 88.
    Chandra, R., Scudder, J.: Capabilities Advertisement with BGP-4. Internet Engineering Task Force, RFC 2842 (May 2000)Google Scholar
  89. 89.
    Labovitz, C., Ahuja, A., Bose, A., Jahanian, J.: Delayed Internet Routing Convergence (August 2000)Google Scholar
  90. 90.
    Li, T., Rekhter, Y.: An Architecture for IPv6 Unicast Address Allocation. Internet Engineering Task Force, RFC 1887 (December 1995)Google Scholar
  91. 91.
    Simpson, W., Narten, T., Nodmark, E.: Neighbor Discovery for IP Version 6 (IPv6). Internet Engineering Task Force, RFC2461 (December 1998)Google Scholar
  92. 92.
    Crawford, M.: Router Renumbering for IPv6. Internet Engineeing Task Force, RFC2894 (August 2000)Google Scholar
  93. 93.
    Rekhter, Y., Bates, T.: Scalable Support for Multi-homed Multi-provider Connectivity. Internet Engineering Task Force, RFC2260 (January 1998)Google Scholar
  94. 94.
    Hagino, J.: IPv6 multihoming support at site exit routers. Internet Engineering Task Force, RFC3178 (April 2001)Google Scholar
  95. 95.
    Teraoka, F., Ishiyama, M., Kunishi, M., Shionozaki, A.: LIN6: A Solution to Mobility and Multi-Homing in IPv6. Internet draft, draft-teraoka-ipng-lin6-02 (November 2001) (work in progress)Google Scholar
  96. 96.
    Tattam, P.: Preserving active TCP sessions on multihomed. In: IPng Working Group Meeting Minutes, Tokio (September 1999) (work in progress)Google Scholar
  97. 97.
    Stewart, R., et al.: Stream Control Transmission Protocol. Internet Engineering Task Force, RFC2960 (October 2000)Google Scholar
  98. 98.
    Py, M.: Multi Homing Translation Protocol. Internet draft, draft-py-multi6-mhtp- 02 (2001) (work in progress)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • O. Bonaventure
    • 1
  • P. Trimintzios
    • 2
  • G. Pavlou
    • 2
  • B. Quoitin
    • 3
  • A. Azcorra
    • 4
  • M. Bagnulo
    • 4
  • P. Flegkas
    • 2
  • A. Garcia-Martinez
    • 4
  • P. Georgatsos
    • 5
  • L. Georgiadis
    • 6
  • C. Jacquenet
    • 7
  • L. Swinnen
    • 3
  • S. Tandel
    • 3
  • S. Uhlig
    • 1
  1. 1.CSE DeptUniversité Catholique de LouvainBelgium
  2. 2.Centre for Communication Systems ResearchUniversity of SurreyGuildford, SurreyU.K.
  3. 3.Infonet groupUniversity of NamurBelgium
  4. 4.Departamento de Ingeniería TelemáticaUniversidad Carlos IIIMadridSpain
  5. 5.Algonet S.A.AthensGreece
  6. 6.Electrical and Computer Engineering Dept.Aristotle University of ThessalonikiThessalonikiGreece
  7. 7.France TelecomRennesFrance

Personalised recommendations