Traffic Management

  • Gunnar Karlsson
  • James Roberts
  • Ioannis Stavrakakis
  • Antonio Alves
  • Stefano Avallone
  • Fernando Boavida
  • Salvatore D’Antonio
  • Marcello Esposito
  • Viktoria Fodor
  • Mauro Gargiulo
  • Jarmo Harju
  • Yevgeni Koucheryavy
  • Fengyi Li
  • Ian Marsh
  • Ignacio Más Ivars
  • Dmitri Moltchanov
  • Edmundo Monteiro
  • Antonis Panagakis
  • Antonio Pescapè
  • Goncalo Quadros
  • Simon Pietro Romano
  • Giorgio Ventre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2856)

Abstract

Quality of service in network communication is mainly assured by traffic management consisting in a variety of protocols and mechanisms whose role is to prevent the network from being congested. Traffic management has been a very active area of research for two decades following the conception of packet-switched integrated services networks, such as the Internet. This chapter provides samples of the state of the art in traffic management. It includes contributions on traffic theory, traffic and service models, quality monitoring, as well as traffic control and measurements.

Keywords

Packet Loss Admission Control Call Admission Control Probe Packet Modulate Markov Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Willinger, W., Paxson, V.: Where mathematics meets the internet. Notices of the American Mathematical Society 45, 961–970 (1998)MATHMathSciNetGoogle Scholar
  2. 2.
    Park, K., Willinger, W.: Self-similar network traffic and performance evaluation. Wiley, Chichester (2000)CrossRefGoogle Scholar
  3. 3.
    Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling tcp throughput: a simple model and its empirical validation. In: Proceedings of SIGCOMM 1998, ACM, New York (1998)Google Scholar
  4. 4.
    Kleinrock, L.: Queuing Theory, vol. 2. Wiley, Chichester (1976)Google Scholar
  5. 5.
    Ben Fredj, S., Bonald, T., Proutire, A., Rgni, G., Roberts, J.: Statistical bandwidth sharing: a study of congestion at flow level. Proceedings of Sigcomm 2001, Computer Communication Review 31, 111–122 (2001)CrossRefGoogle Scholar
  6. 6.
    Bonald, T., Roberts, J.: Congestion at flow level and the impact of user behaviour. Computer Networks (2003) (to appear)Google Scholar
  7. 7.
    Le Boudec, J.Y., Thiran, P.: A theory of deterministic queuing systems for the Internet. LNCS, vol. 2050. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Bonald, T., Proutire, A., Roberts, J.: Statistical performance guarantees for streaming flows using expedited forwarding. In: Proceedings of Infocom 2001, pp. 1104–1112 (2001)Google Scholar
  9. 9.
    Gibbens, R., Kelly, F., Key, P.: A decision theoretic approach to call admission control. IEEE JSAC 13, 1104–1114 (1995)Google Scholar
  10. 10.
    Bonald, T., Oueslati, S., Roberts, J.: Ip traffic and qos control: towards a flow-aware architecture. In: Proceedings of World Telecom Conference, Paris (2002) Google Scholar
  11. 11.
    Benameur, N., Ben Fredj, S., Delcoign, F., Oueslati-Boulahia, S., Roberts, J.: Integrated admission control for streaming and elastic flows. In: Smirnov, M., Crowcroft, J., Roberts, J., Boavida, F. (eds.) QofIS 2001. LNCS, vol. 2156, p. 69. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Quadros, G., Monteiro, E., Boavida, F.: A qos metric for packet networks. In: Proceedings of SPIE International Symposium on Voice, Video, and Data Communications, Hynes Convention Center, Boston, Massachusetts, USA (1998)Google Scholar
  13. 13.
    International Organization for Standardization: Information technology – quality of service: Framework. International Standard 13236 (1998) Google Scholar
  14. 14.
    Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: Rfc 2475 – an architecture for differentiated service (1998) Google Scholar
  15. 15.
    Quadros, G., Alves, A., Monteiro, E., Boavida, F.: An approach to support traffic classes in ip networks. In: Crowcroft, J., Roberts, J., Smirnov, M.I. (eds.) QofIS 2000. LNCS, vol. 1922, pp. 285–299. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Quadros, G., Alves, A., Monteiro, E., Boavida, F.: An effective scheduler for ip routers. In: Proceedings of ISCC 2000, Fifth IEEE Symposium on Computers and Communications, Antibes, France (2000) Google Scholar
  17. 17.
    Quadros, G., Alves, A., Silva, J., Matos, H., Monteiro, E., Boavida, F.: A queue management system for differentiated-services ip routers. In: Crowcroft, J., Roberts, J., Smirnov, M.I. (eds.) QofIS 2000. LNCS, vol. 1922, pp. 14–27. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Alves, A., Quadros, G., Monteiro, E., Boavida, F.: Qostat – a tool for the evaluation of qos-capable routers. In: Proceedings of SPIES’s International Symposium on Voice, Video, and Data Communications, Boston (2000) Google Scholar
  19. 19.
    netIQ: Chariot – User Guide (2001) Google Scholar
  20. 20.
    Oliveira, M., Brito, J., Melo, B., Quadros, G., Monteiro, E.: Encaminhamento com qualidade de serviço: Desafios da implementação da estratégia qosr-lct (portuguese). In: Proceedings of CRC 2000, Third National Conference on Computer Networks – Technologies and Applications, FCCN, Viseu, Portugal (2000) Google Scholar
  21. 21.
    Oliveira, M., Melo, B., Quadros, G., Monteiro, E.: Quality of service routing in the differentiated services framework. In: Proceedings of SPIES’s International Symposium on Voice, Video, and Data Communications, Boston (2000) Google Scholar
  22. 22.
    Lourenco, D., Oliveira, M., Quadros, G., Monteiro, E.: Definição do mecanismo de controlo de admissão para o modelo de serviços de lct-uc. In: Proceedings of CRC 2000, Third National Conference on Computer Networks – Technologies and Applications, FCCN, Viseu, Portugal (2000) Google Scholar
  23. 23.
    Breslau, L., Shenker, S.: Best–effort versus reservations: A simple comparative analysis. ACM Computer Communication Review 28, 3–16 (1998)CrossRefGoogle Scholar
  24. 24.
    Braden, R., Clark, S., Shenker, S.: Integrated services in the internet architecture. RFC 1633, IETF (1994)Google Scholar
  25. 25.
    Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An architecture for differentiated services. RFC 2475, IETF (1998) Google Scholar
  26. 26.
    Shenker, S., Partridge, C., Guerin, R.: Specification of guaranteed quality of service. RFC 2212, IETF (1997) Google Scholar
  27. 27.
    Wroclawski, J.: Specification of the controlled-load network element service. RFC 2211, IETF (1997) Google Scholar
  28. 28.
    Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S.: Resource ReSerVation protocol (RSVP). RFC 2205, IETF (1997) Google Scholar
  29. 29.
    Jacobson, V., Nichols, K., Poduri, K.: An expedited forwarding PHB. RFC 2598, IETF (1999) Google Scholar
  30. 30.
    Heinanen, J., Baker, F.,Weiss,W.,Wroclawski, J.: Assured forwarding PHB group. RFC 2597, IETF (1999) Google Scholar
  31. 31.
    Baker, F., Iturralde, C., Le Faucheur, F., Davie, B.: RSVP reservations aggregation. Internet Draft, IETF (2001) (work in progress) Google Scholar
  32. 32.
    Bernet, Y.: Format of the RSVP DCLASS object. RFC 2996, IETF (2000) Google Scholar
  33. 33.
    Bernet, Y., Ford, P., Yavatkar, R., Baker, F., Zhang, L., Speer, M., Braden, R., Davie, B., Wroclawski, J., Felstaine, E.: A framework for integrated services operation over diffserv networks. RFC 2998, IETF (2000) Google Scholar
  34. 34.
    Cetinkaya, C., Knightly, E.W.: Egress admission control. In: Proc. of IEEE INFOCOM, Tel Aviv, Israel, pp. 1471–1480 (2000)Google Scholar
  35. 35.
    Breslau, L., Jamin, S., Shenker, S.: Comments on the performance of measurement–based admission control algorithms. In: Proc. of IEEE INFOCOM, Tel Aviv, Israel, pp. 1233–1242 (2000)Google Scholar
  36. 36.
    Karlsson, G.: Providing quality for internet video services. In: Proc. of CNIT/IEEE ITWoDC 1998, Ischia, Italy, pp. 133–146 (1998)Google Scholar
  37. 37.
    Fodor (née Elek), V., Karlsson, G., Rönngren, R.: Admission control based on end-to-end measurements. In: Proc. of IEEE INFOCOM 2000, Tel Aviv, Israel, pp. 623–630 (2000) Google Scholar
  38. 38.
    Ramakrishnan, K., Floyd, S.: A proposal to add explicit congestion notification (ECN) to IP. RFC 2481, IETF (1999) Google Scholar
  39. 39.
    Kelly, F.P., Key, P.B., Zachary, S.: Distributed admission control. IEEE Journal on Selected Areas in Communications 18, 2617–2628 (2000)CrossRefGoogle Scholar
  40. 40.
    Kelly, T.: An ECN probe–based conection acceptance control. ACM Computer Communication Review 31, 14–25 (2001)CrossRefGoogle Scholar
  41. 41.
    Bianchi, G., Capone, A., Petrioli, C.: Throughput analysis of end–to–end measurementbased admission control in IP. In: Proc. of IEEE INFOCOM2000, Tel Aviv, Israel, pp. 1461–1470 (2000)Google Scholar
  42. 42.
    Bianchi, G., Capone, A., Petrioli, C.: Packet management techniques for measurement based end-to-end admission control in IP networks. Journal of Communications and Networks 2, 147–156 (2000)Google Scholar
  43. 43.
    Bianchi, G., Borgonovo, F., Capone, A., Petrioli, C.: Endpoint admission control with delay variation measurements for QoS in IP networks. ACM Computer Communication Review 32, 61–69 (2002)CrossRefGoogle Scholar
  44. 44.
    Breslau, L., Knightly, E.W., Shenker, S., Stoica, I., Zhang, H.: Endpoint admission control: Architectural issues and performance. In: Proc. of ACM SIGCOMM 2000, Stockholm, Sweden, pp. 57–69 (2000)Google Scholar
  45. 45.
    Más Ivars, I., Karlsson, G.: PBAC: Probe–based admission control. In: Smirnov, M., Crowcroft, J., Roberts, J., Boavida, F. (eds.) QofIS 2001. LNCS, vol. 2156, pp. 97–109. Springer, Heidelberg (2001)Google Scholar
  46. 46.
    Más, I., Fodor, V., Karlsson, G.: Probe–based admission control for multicast. In: Proc. of IWQoS 02, Miami Beach, Florida, pp. 97–109 (2002)Google Scholar
  47. 47.
    Gibbens, R.J., Kelly, F.P.: Distributed connection acceptance control for a connectionless network. In: Proc. of the 16th International Teletraffic Congress, Edinburgh, Scotland, pp. 941–952 (1999)Google Scholar
  48. 48.
    Bianchi, G., Borgonovo, F., Capone, A., Fratta, L., Petrioli, C.: PCP: an end-to-end measurement-based call admission control for real-time services over IP networks. In: Ajmone Marsan, M., Bianco, A. (eds.) QoS-IP 2001. LNCS, vol. 1989, pp. 391–406. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  49. 49.
    Roberts, J.W., Mocci, U., Virtamo, J. (eds.): COST 242: Broadband Network Teletraffic. LNCS, vol. 1155. Springer, Heidelberg (1996)Google Scholar
  50. 50.
    Conte, M., Más, I., Fodor, V., Karlsson, G.: Policy enforcing for probe–based admission control. In: Proc. of NTS 16, Espoo, Finland, pp. 45–55 (2002)Google Scholar
  51. 51.
    Ventre, G., et al.: Quality of Service control in Premium IP networks. Deliverable 2.1, IST Project CADENUS—IST 11017 (2001) Google Scholar
  52. 52.
    Smirnov, M., et al.: SLA Networks in Premium IP. Deliverable 1.1, IST Project CADENUS— IST 11017 (2001) Google Scholar
  53. 53.
    Goderis, D., et al.: Service Level Specification Semantics and Parameters. Internet Draft, IETF (2002) (work in progress) Google Scholar
  54. 54.
    Quittek, J., Zseby, T., Claise, B.: Requirements for IP Flow Information Export. Internet Draft, IETF (2002) (work in progress) Google Scholar
  55. 55.
    ebXML Technical Architecture Project Team: ebXML Technical Architecture Specification v.1.0.4. Technical specification, ebXML Consortium (2001) Google Scholar
  56. 56.
    D’Antonio, S., Fadini, B., Romano, S., Ventre, G.: Designing Service Negotiation Entities for the Electronic Marketplace. In: Proceedings of SEKE 2002, Ischia, Napoli — Italy (2002) Google Scholar
  57. 57.
    Cremonese, P., et al.: A Framework for Policy-based Management of QoS-aware IP Networks. In: Proceedings of Networking 2002, Pisa —Italy (2002) Google Scholar
  58. 58.
    Chan, K., et al.: COPS Usage for Policy Provisioning (COPS-PR). RFC 3084, IETF (2001) Google Scholar
  59. 59.
    Rawlins, D., et al.: Framework of COPS-PR Policy Usage Feedback. Internet Draft, IETF (2002) (work in progress)Google Scholar
  60. 60.
    Zhang, Z., Towsley, D., Kurose, J.: Statistical analysis of the generalized processor sharing scheduling discipline. In: Proceedings of ACM SIGCOMM, pp. 68–77 (1994)Google Scholar
  61. 61.
    Zhang, Z., Liu, Z., Kurose, J., Towsley, D.: Call admission control schemes under generalized processor sharing scheduling. The Journal of Telecommunication Systems, Modeling, Analysis, Design, and Management 7 (1997) Google Scholar
  62. 62.
    Elwalid, A., Mitra, D.: Design of generalized processor sharing schedulers which statistically multiplex heterogeneous qos classes. In: Proceedings of IEEE INFOCOM 1999, pp. 1220–1230 (1999)Google Scholar
  63. 63.
    Parekh, A., Gallager, R.G.: A generalized processor sharing approach to flow control in integrated services networks: The single-node case. IEEE/ACM Transactions on Networking 1, 344–357 (1993)CrossRefGoogle Scholar
  64. 64.
    Parekh, A., Gallager, R.G.: A generalized processor sharing approach to flow control in integrated services networks: The multiple node case. IEEE/ACM Transactions on Networking 2, 137–150 (1994)CrossRefGoogle Scholar
  65. 65.
    Szabo, R., Barta, P., Nemeth, F., Biro, J.: Call admission control in generalized processor sharing (gps) schedulers using non-rate proportional weighting of sessions. In Proceedings of INFOCOM 2000 (2000) Google Scholar
  66. 66.
    Zhang, Z., Liu, Z., Towsley, D.: Closed-form deterministic end-to-end performance bounds for the generalized processor sharing scheduling discipline. Journal of Combinatorial Optimization 1 (1998) Google Scholar
  67. 67.
    Georgiadis, L., Gu’erin, R., Peris, V., Sivarajan, K.: Efficient network qos provisioning based on per node traffic shaping. IEEE/ACM Transactions on Networking 4, 482–501 (1996)CrossRefGoogle Scholar
  68. 68.
    Duffield, N.G., Lakshman, T.V., Stiliadis, D.: On adaptive bandwidth sharing with rate guarantees. In: Proceedings of INFOCOM 1998, pp. 1122–1130 (1998)Google Scholar
  69. 69.
    Chang, C.S., Chen, K.C.: Service curve proportional sharing algorithm for serviceguaranteed multiaccess in integrated-service distributed networks. In: Proceedings of GLOBECOM 1999, pp. 1340 –1344 (1999)Google Scholar
  70. 70.
    Stamoulis, A., Giannakis, G.: Deterministic time-varying packet fair queueing for integrated services networks. In: Proceedings of GLOBECOM 2000, pp. 621–625 (2000)Google Scholar
  71. 71.
    Toutain, F.: Decoupled generalized processor sharing: A fair queueing principle for adaptive multimedia applications. In: Proceedings of INFOCOM 1998, pp. 291–298 (1998)Google Scholar
  72. 72.
    Panagakis, A., Stavrakakis, I.: Optimal call admission control under generalized processor sharing scheduling. In: Wolf, L., Hutchinson, D.A., Steinmetz, R. (eds.) IWQoS 2001. LNCS, vol. 2092, p. 419. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  73. 73.
    Boudec, J.Y.L.: Application of network calculus to guaranteed service networks. IEEE Transactions on Information Theory 44, 1087–1096 (1998)MATHCrossRefGoogle Scholar
  74. 74.
    Panagakis, A., Stavrakakis, I.: Generalized processor sharing enhancement through session decomposition. In Proceedings of Net-Con 2002 (2002) Google Scholar
  75. 75.
    Sisodia, G., Headley, M.: Statistical analysis and simulation study of vbr coded video source models in atm networks. In: Proceedings of UPC, pp. 177–181 (1998)Google Scholar
  76. 76.
    Li, S.Q., Hwang, C.L.: Queue response to input correlation functions: discrete spectral analysis. IEEE Trans. on Networking 1, 533–552 (1997)Google Scholar
  77. 77.
    Lombardo, A., Morabito, G., Schembra, G.: An accurate and treatable markov model of mpeg video traffic. In: Proc. of IEEE INFOCOM 1998, pp. 217–224 (1998)Google Scholar
  78. 78.
  79. 79.
    Heyman, D.: The gbar source model for vbr videoconferences. IEEE Trans. on Networking 5, 554–560 (1997)CrossRefGoogle Scholar
  80. 80.
    Heyman, D., Tabatabai, A., Lakshman, T.: Statistical analysis and simulation study of video teleconference traffic in atm networks. IEEE Trans. on Circ. and Syst. for Video Tech. 2, 49–59 (1992)CrossRefGoogle Scholar
  81. 81.
    Koucheryavy, Y., Moltchanov, D., Harju, J.: A novel two-step mpeg traffic modeling algorithm based on a gbar process. In: Proc. of NET-CON, pp. 293–304 (2002)Google Scholar
  82. 82.
    Lombardo, A., Morabito, G., Palazzo, S., Schembra, G.: Intra-gop modeling of mpeg video traffic. In: Proc. of IEEE ICC, vol. 1, pp. 563–567 (1998)Google Scholar
  83. 83.
    Lombardo, A., Morabito, G., Palazzo, S., Schembra, G.: A fast simulation of mpeg video traffic. In: Proc. GLOBECOM, vol. 2, pp. 702–707 (1998)Google Scholar
  84. 84.
    Blondia, C., Casals, O.: Performance analysis of statistical multiplexing of vbr sources. In: Proc. IEEE INFOCOM, pp. 828–838 (1992)Google Scholar
  85. 85.
    Koucheryavy, Y., Moltchanov, D., Harju, J.: A top-down approach to vod traffc transmission over diffserv domain using the af phb class. In: Proc. of IEEE ICC, Alaska, USA (2003) Google Scholar
  86. 86.
    Meyer, C.: Matrix analysis and applied linear algebra. SIAM Publications, Philadelphia (2000)MATHCrossRefGoogle Scholar
  87. 87.
    Hajek, B., Linhai, H.: On variations of queue response for inputs with the same mean and autocorrelation function. IEEE Trans. on Networking 6, 588–598 (1998)CrossRefGoogle Scholar
  88. 88.
    Awduche, D.: MPLS and Traffic Engineering in IP networks. IEEE Communications Magazine 37, 42–47 (1999)CrossRefGoogle Scholar
  89. 89.
    Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol label switching architecture. RFC 3031, IETF (2001) Google Scholar
  90. 90.
    Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., Xiao, X.: Overview and Principles of Internet Traffic Engineering. RFC 3272, IETF (2002) Google Scholar
  91. 91.
    Blake, S., et al.: An architecture for differentiated services. RFC 2475, IETF (1998) Google Scholar
  92. 92.
    Le Faucheur, F., et al.: Multi-protocol label switching (MPLS) support of differentiated services. RFC 3270, IETF (2002)Google Scholar
  93. 93.
    Cho, K.: Alternate Queuing (ALTQ) module, http://www.csl.sony.co.jp/person/kjc/programs.html
  94. 94.
    Almesberger, W.: Linux network traffic control - implementation overview. EPFL ICA (2001) (white paper) Google Scholar
  95. 95.
    Almesberger,W., Hadi Salim, J., Kuznetsov, A.: Differentiated services on linux. Internet Draft, IETF (1999) (work in progress) Google Scholar
  96. 96.
    Leu, J.R.: MPLS for Linux, http://sourceforge.net/projects/mpls-linux
  97. 97.
    Avallone, S., Esposito, M., Pescapé, A., Romano, S., Ventre, G.: Measuring MPLS overhead. In: Proc. of ICCC 2002, Mumbai, India (2002) Google Scholar
  98. 98.
    Avallone, S., D’Arienzo, M., Esposito, M., Pescapé, A., Romano, S., Ventre, G.: Mtools. IEEE Network 16, 3 (2002); Networking columnGoogle Scholar
  99. 99.
    Avallone, S., Esposito, M., Pescapé, A., Romano, S., Ventre, G.: Mtools: a one-way delay and round-trip time meter. In: Mastorakis, N., Mladenov, V., eds.: Recent Advances in Computers, Computing and Communications (2002)Google Scholar
  100. 100.
    Avallone, S., Esposito,M., Pescapé, A., Romano, S., Ventre, G.: An experimental analysis of Diffserv-MPLS interoperability. In: Proc. of ICT 2003, Papeete, French Polynesia (2003) Google Scholar
  101. 101.
    ITU-T Recommendation G.114: General Characteristics of International Telephone Connections and International Telephone Circuits: One-Way Transmission Time (1998) Google Scholar
  102. 102.
    Cole, R., Rosenbluth, J.: Voice over IP Performance Monitoring. ACM Computer Communication Review (2002) Google Scholar
  103. 103.
    ITU-T Recommendation G.107: The E-Model, a computational model for use in transmission planning (1998) Google Scholar
  104. 104.
    Sun, L.F., Wade, G., Lines, B.M., Ifeachor, E.C.: Impact of Packet Loss Location on Perceived Speech Quality. In: Proceedings of 2nd IP-Telephony Workshop (IPTEL 2001), Columbia University, New York, pp. 114–122 (2001)Google Scholar
  105. 105.
    Kitawaki, N., Kurita, T., Itoh, K.: Effects of Delay on Speech Quality. NTT Review 3, 88–94 (1991)Google Scholar
  106. 106.
    Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Transport Protocol for Real-Time Applications. RFC 1889, Internet Engineering Task Force (1996), http://www.rfc-editor.org/rfc/rfc1889.txt
  107. 107.
    Li, F.: Measurements of Voice over IP Quality. Master’s thesis, KTH, Royal Institute of Technology, Sweden (2002) Google Scholar
  108. 108.
    Hagsand, O., Hansson, K., Marsh, I.: Measuring Internet Telephone Quality: Where are we today? In: Proceedings of the IEEE Conference on Global Communications (GLOBECOM), Rio, Brazil, IEEE, Los Alamitos (1999)Google Scholar
  109. 109.
    Bolot, J., Crepin, H., Garcia, A.: Analysis of audio packet loss in the internet. In: Little, T.D.C., Gusella, R. (eds.) NOSSDAV 1995. LNCS, vol. 1018, pp. 163–174. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  110. 110.
    Maxemchuk, N.F., Lo, S.: Measurement and interpretation of voice traffic on the Internet. In: Conference Record of the International Conference on Communications (ICC), Montreal, Canada (1997) Google Scholar
  111. 111.
    Lin, D.: Real-time voice transmissions over the Internet. Master’s thesis, Univ. of Illinois at Urbana-Champaign (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Gunnar Karlsson
    • 1
  • James Roberts
    • 2
  • Ioannis Stavrakakis
    • 3
  • Antonio Alves
    • 4
  • Stefano Avallone
    • 5
  • Fernando Boavida
    • 6
  • Salvatore D’Antonio
    • 7
  • Marcello Esposito
    • 7
  • Viktoria Fodor
    • 1
  • Mauro Gargiulo
    • 7
  • Jarmo Harju
    • 8
  • Yevgeni Koucheryavy
    • 8
  • Fengyi Li
    • 9
  • Ian Marsh
    • 1
    • 10
  • Ignacio Más Ivars
    • 1
  • Dmitri Moltchanov
    • 8
  • Edmundo Monteiro
    • 6
  • Antonis Panagakis
    • 3
  • Antonio Pescapè
    • 5
  • Goncalo Quadros
    • 4
  • Simon Pietro Romano
    • 5
  • Giorgio Ventre
    • 5
  1. 1.Laboratory for Communication NetworksKTH, Royal Institute of TechnologyKistaSweden
  2. 2.DAC/OATFrance Telecom R&DIssy les Moulineaux
  3. 3.Department of Informatics and TelecommunicationsUniversity of AthensAthensGreece
  4. 4.Critical Software, SA,Santa ClaraCoimbraPortugal
  5. 5.Dipartimento di Informatica e SistemisticaUniversita degli Studi di Napoli Federico IINapoliItaly
  6. 6.Laboratory of Communications and TelematicsUniversity of CoimbraCoimbraPortugal
  7. 7.ITEM – Laboratorio Nazionale CINI per l’Informatica e la Telematica MultimedialiNapoliItaly
  8. 8.Institute of Communication EngineeringTampere University of TechnologyTampereFinland
  9. 9.KTHRoyal Institute of TechnologyStockholmSweden
  10. 10.Swedish Institute of Computer ScienceKistaSweden

Personalised recommendations