The Element of Surprise in Timed Games

  • Luca de Alfaro
  • Marco Faella
  • Thomas A. Henzinger
  • Rupak Majumdar
  • Mariëlle Stoelinga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)


We consider concurrent two-person games played in real time, in which the players decide both which action to play, and when to play it. Such timed games differ from untimed games in two essential ways. First, players can take each other by surprise, because actions are played with delays that cannot be anticipated by the opponent. Second, a player should not be able to win the game by preventing time from diverging. We present a model of timed games that preserves the element of surprise and accounts for time divergence in a way that treats both players symmetrically and applies to all ω-regular winning conditions. We prove that the ability to take each other by surprise adds extra power to the players. For the case that the games are specified in the style of timed automata, we provide symbolic algorithms for their solution with respect to all ω-regular winning conditions. We also show that for these timed games, memory strategies are more powerful than memoryless strategies already in the case of reachability objectives.


Location Goal Winning Strategy Game Structure Clock Condition Winning Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AD94]
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comp. Sci. 126, 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [AdAHM99]
    Alur, R., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Automating modular verification. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 82–97. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. [AH97]
    Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 74–88. Springer, Heidelberg (1997)Google Scholar
  4. [AHK02]
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49, 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  5. [AMPS98]
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: Proc. IFAC Symp. System Structure and Control, pp. 469–474. Elsevier, Amsterdam (1998)Google Scholar
  6. [Chu63]
    Church, A.: Logic, arithmetics, and automata. In: Proc. Int. Congress of Mathematicians, 1962, pp. 23–35 (1963)Google Scholar
  7. [dAHM01a]
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dynamic programs for omega-regular objectives. In: Proc. Symp. Logic in Comp. Sci., pp. 279–290. IEEE, Los Alamitos (2001)CrossRefGoogle Scholar
  8. [dAHM01b]
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Symbolic algorithms for infinite-state games. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 536–550. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. [dAHS02]
    de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Timed interfaces. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. [EJ91]
    Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus, and determinacy. In: Proc. Symp. Foundations of Comp. Sci., pp. 368–377. IEEE, Los Alamitos (1991)Google Scholar
  11. [FLM02]
    Faella, M., La Torre, S., Murano, A.: Dense real-time games. In: Proc. Symp. Logic in Comp. Sci., pp. 167–176. IEEE, Los Alamitos (2002)Google Scholar
  12. [HHM99]
    Henzinger, T.A., Horowitz, B., Majumdar, R.: Rectangular hybrid games. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 320–335. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. [HK99]
    Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theor. Comp. Sci. 221, 369–392 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [MP91]
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  15. [MPS95]
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)Google Scholar
  16. [PR89]
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. Symp. Principles of Programming Languages, pp. 179–190. ACM, New York (1989)Google Scholar
  17. [RW89]
    Ramadge, P.J.G., Wonham, W.M.: The control of discrete-event systems. IEEE Transactions on Control Theory 77, 81–98 (1989)Google Scholar
  18. [SGSAL98]
    Segala, R., Gawlick, G., Søgaard-Andersen, J., Lynch, N.: Liveness in timed and untimed systems. Info. and Comput. 141, 119–171 (1998)zbMATHCrossRefGoogle Scholar
  19. [Tho90]
    Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook Theor. Comp. Sci., vol. B, pp. 135–191. Elsevier, Amsterdam (1990)Google Scholar
  20. [Yi90]
    Yi, W.: Real-time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 502–520. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Luca de Alfaro
    • 1
  • Marco Faella
    • 1
    • 2
  • Thomas A. Henzinger
    • 3
  • Rupak Majumdar
    • 3
  • Mariëlle Stoelinga
    • 1
  1. 1.Department of Computer EngineeringUCSanta CruzUSA
  2. 2.Dipartimento di Informatica ed ApplicazioniUniversità di SalernoItaly
  3. 3.Department of Electrical Engineering and Computer SciencesUCBerkeleyUSA

Personalised recommendations