Advertisement

Quantitative Verification and Control via the Mu-Calculus

  • Luca de Alfaro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)

Abstract

Linear-time properties and symbolic algorithms provide a widely used framework for system specification and verification. In this framework, the verification and control questions are phrased as boolean questions: a system either satisfies (or can be made to satisfy) a property, or it does not. These questions can be answered by symbolic algorithms expressed in the μ-calculus. We illustrate how the μ-calculus also provides the basis for two quantitative extensions of this approach: a probabilistic extension, where the verification and control problems are answered in terms of the probability with which the specification holds, and a discounted extension, in which events in the near future are weighted more heavily than events in the far away future.

Keywords

Discount Factor Markov Decision Process Function Symbol Stochastic Game Parity Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AHK02]
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating time temporal logic. J. ACM 49, 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  2. [AHKV98]
    Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. [BC96]
    Bhat, G., Cleaveland, R.: Efficient model checking via the equational μ-calculus. In: Proc. 11th IEEE Symp. Logic in Comp. Sci., pp. 304–312 (1996)Google Scholar
  4. [Ber95]
    Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I and II. Athena Scientific (1995)Google Scholar
  5. [BL69]
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finitestate strategies. Trans. Amer. Math. Soc. 138, 295–311 (1969)CrossRefMathSciNetGoogle Scholar
  6. [Bry86]
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers C-35(8), 677–691 (1986)CrossRefGoogle Scholar
  7. [Con92]
    Condon, A.: The complexity of stochastic games. Information and Computation 96, 203–224 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [dAH00]
    de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: Proc. 15th IEEE Symp. Logic in Comp. Sci., pp. 141–154 (2000)Google Scholar
  9. [dAHK98]
    de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. In: Proc. 39th IEEE Symp. Found. of Comp. Sci., pp. 564–575. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  10. [dAHM01a]
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dynamic programs for omega-regular objectives. In: Proc. 16th IEEE Symp. Logic in Comp. Sci., pp. 279–290. IEEE Press, Los Alamitos (2001)CrossRefGoogle Scholar
  11. [dAHM01b]
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Symbolic algorithms for infinite-state games. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 536–550. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. [dAHM03]
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In: Proc. 30th Int. Colloq. Aut. Lang. Prog. Lect. Notes in Comp. Sci.. Springer, Heidelberg (2003)Google Scholar
  13. [dAM01]
    de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. In: Proc. 33rd ACM Symp. Theory of Comp., pp. 675–683. ACM Press, New York (2001)Google Scholar
  14. [DEP02]
    Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled markov processes. Information and Computation 179(2), 163–193 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [Der70]
    Derman, C.: Finite State Markovian Decision Processes. Academic Press, London (1970)zbMATHGoogle Scholar
  16. [DGJP99]
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 258–273. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. [DGJP02]
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: The metric analogue of weak bisimulation for probabilistic processes. In: Proc. 17th IEEE Symp. Logic in Comp. Sci., pp. 413–422 (2002)Google Scholar
  18. [EJ91]
    Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract). In: Proc. 32nd IEEE Symp. Found. of Comp. Sci., pp. 368–377. IEEE Computer Society Press, Los Alamitos (1991)CrossRefGoogle Scholar
  19. [EL86]
    Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the propositional μ-calculus. In: Proc. First IEEE Symp. Logic in Comp. Sci., pp. 267–278 (1986)Google Scholar
  20. [Eve57]
    Everett, H.: Recursive games. In: Contributions to the Theory of Games III. Annals of Mathematical Studies, vol. 39, pp. 47–78 (1957)Google Scholar
  21. [Fel83]
    Feldman, Y.A.: A decidable propositional probabilistic dynamic logic. In: Proc. 15th ACM Symp. Theory of Comp., pp. 298–309 (1983)Google Scholar
  22. [FH82]
    Feldman, Y.A., Harel, D.: A probabilistic dynamic logic. In: Proc. 14th ACM Symp. Theory of Comp., pp. 181–195 (1982)Google Scholar
  23. [FV97]
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  24. [HK97]
    Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: Proc. 12th IEEE Symp. Logic in Comp. Sci., pp. 111–122 (1997)Google Scholar
  25. [HM00]
    Henzinger, T.A., Majumdar, R.: A classification of symbolic transition systems. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 13–34. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. [Koz83a]
    Kozen, D.: A probabilistic PDL. In: Proc. 15th ACM Symp. Theory of Comp., pp. 291–297 (1983)Google Scholar
  27. [Koz83b]
    Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27(3), 333–354 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  28. [KSK66]
    Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. D. Van Nostrand Company (1966)Google Scholar
  29. [Mar98]
    Martin, D.A.: The determinacy of Blackwell games. The Journal of Symbolic Logic 63(4), 1565–1581 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  30. [Mil90]
    Milner, R.: Operational and algebraic semantics of concurrent processes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 1202–1242. Elsevier Science Publishers, North-Holland (1990)Google Scholar
  31. [MP91]
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, New York (1991)zbMATHGoogle Scholar
  32. [Rei80]
    Reif, J.H.: Logic for probabilistic programming. In: Proc. 12th ACM Symp. Theory of Comp., pp. 8–13 (1980)Google Scholar
  33. [Ros90]
    Rosenthal, K.I.: Quantales and Their Applications. Pitman Research Notes in Mathematics Series, vol. 234. Longman Scientific & Technical, Harlow (1990)zbMATHGoogle Scholar
  34. [Sha53]
    Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. USA 39, 1095–1100 (1953)zbMATHCrossRefMathSciNetGoogle Scholar
  35. [Tho90]
    Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. ch. 4, vol. B, pp. 135–191. Elsevier Science Publishers, North-Holland (1990)Google Scholar
  36. [Tho95]
    Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)Google Scholar
  37. [vBW01a]
    van Breugel, F., Worrel, J.: An algorithm for quantitative verification of probabilistic transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 336–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  38. [vBW01b]
    van Breugel, F., Worrel, J.: Towards quantitative verification of probabilistic systems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 421–432. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  39. [vN28]
    von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Math. Annal 100, 295–320 (1928)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Luca de Alfaro
    • 1
  1. 1.Department of Computer EngineeringUCSanta CruzUSA

Personalised recommendations