A Compositional Semantic Theory for Synchronous Component-Based Design

  • Barry Norton
  • Gerald Lüttgen
  • Michael Mendler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)


Digital signal processing and control (DSPC) tools allow application developers to assemble systems by connecting predefined components in signal-flow graphs and by hierarchically building new components via encapsulating sub-graphs. Run-time environments then dynamically schedule components for execution on some embedded processor, typically in a synchronous cycle-based fashion, and check whether one component jams another by producing outputs faster than can be consumed. This paper develops a process-algebraic model of coordination for synchronous component-based design, which directly lends itself to compositionally formalising the monolithic semantics of DSPC tools. By uniformly combining the well-known concepts of abstract clocks, maximal progress and clock-hiding, it is shown how the DSPC principles of dynamic synchronous scheduling, isochrony and encapsulation may be captured faithfully and compositionally in process algebra, and how observation equivalence may facilitate jam checks at compile-time.


Output Port Input Port Process Algebra Component Interface Computation Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, H.R., Mendler, M.: An asynchronous process algebra with multiple clocks. In: Sannella, D. (ed.) ESOP 1994. LNCS, vol. 788, pp. 58–73. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Bernardo, M., Ciancarini, P., Donatiello, L.: Detecting architectural mismatches in process algebraic descriptions of software systems. In: WICSA 2001, pp. 77–86. IEEE Comp. Soc. Press, Los Alamitos (2001)Google Scholar
  3. 3.
    Cleaveland, R., Lüttgen, G., Mendler, M.: An algebraic theory of multiple clocks. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 166–180. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Cleaveland, R., Sims, S.: The NCSU Concurrency Workbench. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 394–397. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE 2001. Softw. Eng. Notes, vol. 26(5), pp. 109–120. ACM Press, New York (2001)CrossRefGoogle Scholar
  6. 6.
    Hauck, S.: Asynchronous design methodologies: An overview. Proc. of the IEEE 83(1), 69–93 (1995)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hennessy, M., Regan, T.: A process algebra for timed systems. Inform. and Comp. 117, 221–239 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  9. 9.
    Johnson, G.W., Jennings, R.: LabView Graphical Programming. McGraw-Hill, New York (2001)Google Scholar
  10. 10.
    Lee, E.A.: Overview of the Ptolemy project. Technical Report UCB/ERL M01/11, Univ. of California at Berkeley (2001)Google Scholar
  11. 11.
    Lee, E.A., Xiong, Y.: Behavioral types for component-based design. Technical Report UCB/ERL M02/29, Univ. of California at Berkeley (2002)Google Scholar
  12. 12.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  13. 13.
    Prasad, K.V.S.: Programming with broadcasts. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 173–187. Springer, Heidelberg (1993)Google Scholar
  14. 14.
    Puntigam, F.: Type specifications with processes. In: FORTE 1995. IFIP Conf. Proc., vol. 43. Chapman & Hall, Boca Raton (1995)Google Scholar
  15. 15.
    Sicheneder, A., et al.: Tool-supported software design and program execution for signal processing applications using modular software components. In: STTT 1998. BRICS Notes Series NS-98-4, pp. 61–70 (1998)Google Scholar
  16. 16.
    Verhoef, C.: A congruence theorem for structured operational semantics with predicates and negative premises. Nordic J. of Computing 2(2), 274–302 (1995)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Barry Norton
    • 1
  • Gerald Lüttgen
    • 2
  • Michael Mendler
    • 3
  1. 1.Department of Computer ScienceUniversity of SheffieldUK
  2. 2.Department of Computer ScienceUniversity of YorkUK
  3. 3.Informatics Theory GroupUniversity of BambergGermany

Personalised recommendations