Relating Fairness and Timing in Process Algebras

  • F. Corradini
  • M. R. Di Berardini
  • W. Vogler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)


This paper contrasts two important features of parallel system computations: fairness and timing. The study is carried out at specification system level by resorting to a well-known process description language. The language is extended with labels which allow to filter out those process executions that are not (weakly) fair (as in [5,6]), and with upper time bounds for the process activities (as in [2]).

We show that fairness and timing are closely related. Two main results are stated. First, we show that each everlasting (or non-Zeno) timed process execution is fair. Second, we provide a characterization for fair executions of untimed processes in terms of timed process executions. This results in a finite representation of fair executions using regular expressions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brookes, S.: Traces, Pomsets, Fairness and Full Abstarctions for Communicating Processes. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 466–482. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Corradini, F., Vogler, W., Jenner, L.: Comparing the Worst-Case Efficiency of Asynchronous Systems with PAFAS. Acta Informatica 38, 735–792 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Corradini, F., Di Berardini, M.R., Vogler, W.: PAFAS at work: Comparing the Worst-Case Efficiency of Three Buffer Implementations. In: Proc. of 2nd Asia- Pacific Conference on Quality Software, APAQS 2001, pp. 231–240. IEEE, Los Alamitos (2001)CrossRefGoogle Scholar
  4. 4.
    Corradini, F., Di Berardini, M.R., Vogler, W.: Relating Fairness and Timing in Process Algebra. RR 03-2003, Univ. of L’Aquila (2003), Available from:
  5. 5.
    Costa, G., Stirling, C.: A Fair Calculus of Communicating Systems. Acta Informatica 21, 417–441 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Costa, G., Stirling, C.: Weak and Strong Fairness in CCS. Information and Computation 73, 207–244 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    De Nicola, R., Hennessy, M.C.B.: Testing equivalence for processes. Theoret. Comput. Sci. 34, 83–133 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  9. 9.
    Jenner, L., Vogler, W.: Comparing the Efficiency of Asynchronous Systems. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 172–191. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Jenner, L., Vogler, W.: Fast asynchronous systems in dense time. Theoret. Comput. Sci. 254, 379–422 (2001); Extended abstract in Meyer auf der Heide, F., Monien, B. (eds.): ICALP 1996. LNCS, vol. 1099. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  11. 11.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco (1996)zbMATHGoogle Scholar
  12. 12.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  13. 13.
    Vogler, W.: Efficiency of asynchronous systems, read arcs, and the MUTEXproblem. Theoret. Comput. Sci. 275, 589–631 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Vogler, W. (ed.): Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625. Springer, Heidelberg (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • F. Corradini
    • 1
  • M. R. Di Berardini
    • 1
  • W. Vogler
    • 2
  1. 1.Dipartimento di InformaticaUniversitá di L’Aquila 
  2. 2.Institut für InformatikUniversität Augsburg 

Personalised recommendations