Linear Forwarders

  • Philippa Gardner
  • Cosimo Laneve
  • Lucian Wischik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)


A linear forwarder is a process which receives one message on a channel and sends it on a different channel. Such a process allows for a simple implementation of the asynchronous pi calculus, by means of a direct encoding of the pi calculus’ input capability (that is, where a received name is used as the subject of subsequent input). This encoding is fully abstract with respect to barbed congruence.

Linear forwarders are actually the basic mechanism of an earlier implementation of the pi calculus called the fusion machine. We modify the fusion machine, replacing fusions by forwarders. The result is more robust in the presence of failures, and more fundamental.


Abstract Machine Label Semantic Small Relation Broadcast Network Structural Congruence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL 2001, pp. 104–115. ACM Press, New York (2001)CrossRefGoogle Scholar
  2. 2.
    Amadio, R., Boudol, G., Lhoussaine, C.: The receptive distributed pi-calculus. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 304–315. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Amadio, R.: An asynchronous model of locality, failure, and process mobility. In: Garlan, D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, pp. 374–391. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Boreale, M.: On the expressiveness of internal mobility in name-passing calculi. Theoretical Computer Science 195(2), 205–226 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boudol, G.: Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA Sophia-Antipolis (1992)Google Scholar
  6. 6.
    Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1), 177–213 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the join-calculus. In: POPL 1996, pp. 372–385. ACM Press, New York (1996)CrossRefGoogle Scholar
  8. 8.
    Gardner, P., Laneve, C., Wischik, L.: The fusion machine. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 418–433. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Gelernter, D., Carriero, N., Chandran, S., Chang, S.: Parallel programming in Linda. In: ICPP 1985, pp. 255–263. IEEE, Los Alamitos (1985)Google Scholar
  10. 10.
    Giacalone, A., Mishra, P., Prasad, S.: Facile: A symmetric integration of concurrent and functional programming. International Journal of Parallel Programming 18(2), 121–160 (1989)CrossRefGoogle Scholar
  11. 11.
    Honda, K., Yoshida, N.: On reduction-based process semantics. Theoretical Computer Science 152(2), 437–486 (1995)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM Transactions on Programming Languages and Systems 21(5), 914–947 (1999)CrossRefGoogle Scholar
  13. 13.
    Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 856–867. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Merro, M.: On equators in asynchronous name-passing calculi without matching. In: EXPRESS 1999. Electronic Notes in Theoretical Computer Science, vol. 27. Elsevier Science Publishers, Amsterdam (1999)Google Scholar
  15. 15.
    Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)Google Scholar
  16. 16.
    Parrow, J., Sjödin, P.: Multiway synchronization verified with coupled simulation. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 518–533. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  17. 17.
    Sangiorgi, D.: Pi-calculus, internal mobility and agent-passing calculi. Theoretical Computer Science 167(1–2), 235–275 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sangiorgi, D.: On the bisimulation proof method. Mathematical Structures in Computer Science 8(5), 447–479 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sewell, P., Wojciechowski, P., Pierce, B.: Location independence for mobile agents. In: Bal, H.E., Cardelli, L., Belkhouche, B. (eds.) ICCL-WS 1998. LNCS, vol. 1686, pp. 1–31. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Philippa Gardner
    • 1
  • Cosimo Laneve
    • 2
  • Lucian Wischik
    • 2
  1. 1.Imperial CollegeLondon
  2. 2.University of BolognaItaly

Personalised recommendations