Full Abstraction for HOPLA

  • Mikkel Nygaard
  • Glynn Winskel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)


A fully abstract denotational semantics for the higher-order process language HOPLA is presented. It characterises contextual and logical equivalence, the latter linking up with simulation. The semantics is a clean, domain-theoretic description of processes as downwards-closed sets of computation paths: the operations of HOPLA arise as syntactic encodings of canonical constructions on such sets; full abstraction is a direct consequence of expressiveness with respect to computation paths; and simple proofs of soundness and adequacy shows correspondence between the denotational and operational semantics.


Operational Semantic Linear Logic Computation Path Denotational Semantic Closed Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benton, P.N.: A mixed linear and non-linear logic: proofs, terms and models (extended abstract). In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  2. 2.
    Bräuner, T.: An Axiomatic Approach to Adequacy. Ph.D. Dissertation, University of Aarhus, BRICS Dissertation Series DS-96-4 (1996)Google Scholar
  3. 3.
    Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients. In: Proc. POPL 2000 (2000)Google Scholar
  4. 4.
    Cattani, G.L., Winskel, G.: Profunctors, open maps and bisimulation. Manuscript (2000)Google Scholar
  5. 5.
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gordon, A.D.: Bisimilarity as a theory of functional programming. In: Proc. MFPS 1995. ENTCS 1 (1995)Google Scholar
  7. 7.
    Hennessy, M.C.B., Plotkin, G.D.: Full abstraction for a simple parallel programming language. In: Becvar, J. (ed.) MFCS 1979. LNCS, vol. 74. Springer, Heidelberg (1979)Google Scholar
  8. 8.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32(1), 137–161 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hennessy, M.: A fully abstract denotational model for higher-order processes. Information and Computation 112(1), 55–95 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hoare, C.A.R.: A Model for Communicating Sequential Processes. Technical monograph, PRG-22, University of Oxford Computing Laboratory (1981)Google Scholar
  11. 11.
    Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information and Computation 127, 164–185 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Larsen, K.G., Winskel, G.: Using information systems to solve recursive domain equations effectively. In: Plotkin, G., MacQueen, D.B., Kahn, G. (eds.) Semantics of Data Types 1984. LNCS, vol. 173. Springer, Heidelberg (1984)Google Scholar
  13. 13.
    Melliès, P.-A.: Categorical models of linear logic revisited. Theoretical Computer Science (2002) (submitted to)Google Scholar
  14. 14.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II. Information and Computation 100(1), 1–77 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Morris, J.H.: Lambda-Calculus Models of Programming Languages. PhD thesis, MIT (1968)Google Scholar
  16. 16.
    Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains, part I. Theoretical Computer Science 13(1), 85–108 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Nygaard, M.: Towards an operational understanding of presheaf models. Progress report, University of Aarhus (2001)Google Scholar
  18. 18.
    Nygaard, M., Winskel, G.: Linearity in process languages. In: Proc. LICS 2002 (2002)Google Scholar
  19. 19.
    Nygaard, M., Winskel, G.: HOPLA—a higher-order process language. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, p. 434. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Nygaard, M., Winskel, G.: Domain theory for concurrency. Theoretical Computer Science (2003) (submitted to)Google Scholar
  21. 21.
    Scott, D.S.: Domains for denotational semantics. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  22. 22.
    Seely, R.A.G.: Linear logic, ∗-autonomous categories and cofree coalgebras. In: Proc. Categories in Computer Science and Logic (1987)Google Scholar
  23. 23.
    Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cambridge (1993)zbMATHGoogle Scholar
  24. 24.
    Winskel, G.: A presheaf semantics of value-passing processes. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119. Springer, Heidelberg (1996)Google Scholar
  25. 25.
    Winskel, G., Zappa Nardelli, F.: Manuscript (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Mikkel Nygaard
    • 1
  • Glynn Winskel
    • 2
  1. 1.BRICSUniversity of Aarhus 
  2. 2.Computer LaboratoryUniversity of Cambridge 

Personalised recommendations