Multi-valued Model Checking via Classical Model Checking

  • Arie Gurfinkel
  • Marsha Chechik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)


Multi-valued model-checking is an extension of classical model-checking to reasoning about systems with uncertain information, which are common during early design stages. The additional values of the logic are used to capture the degree of uncertainty. In this paper, we show that the multi-valued μ-calculus model-checking problem is reducible to several classical model-checking problems. The reduction allows one to reuse existing model-checking tools and algorithms to solve multi-valued model-checking problems. This paper generalizes, extends and corrects previous work in this area, done in the context of 3-valued models, symbolic model-checking, and De Morgan algebras.


Model Check Temporal Logic Transition Relation Atomic Proposition Heyting Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruns, G., Godefroid, P.: Model Checking Partial State Spaces with 3-Valued Temporal Logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Bruns, G., Godefroid, P.: Generalized Model Checking: Reasoning about Partial State Spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. Transactions on Computers 8(C-35), 677–691 (1986)CrossRefGoogle Scholar
  4. 4.
    Chan, W.: Temporal-Logic Queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-Valued Symbolic Model- Checking. ACM Transactions on Software Engineering and Methodology (2003) (accepted for publication.)Google Scholar
  6. 6.
    Chechik, M., Devereux, B., Easterbrook, S., Lai, A., Petrovykh, V.: Efficient Multiple- Valued Model-Checking Using Lattice Representations. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 451–465. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Chechik, M., Devereux, B., Gurfinkel, A.: χChek: A Multi-Valued Model-Checker. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 505–509. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Chechik, M., Easterbrook, S.: Model-Checking Over Multi-Valued Logics. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 72–98. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  10. 10.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Programming Languages and Systems 8(2), 244–263 (1986)zbMATHCrossRefGoogle Scholar
  11. 11.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  12. 12.
    Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier Science Publishers, Amsterdam (1990)Google Scholar
  13. 13.
    Fitting, M.: Many-Valued Modal Logics. Fundamenta Informaticae 15(3-4), 335–350 (1991)MathSciNetGoogle Scholar
  14. 14.
    Fitting, M.: Many-Valued Modal Logics II. Fundamenta Informaticae 17, 55–73 (1992)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Fitting, M.C.: Intuitionistic Logic Model Theory and Forcing. North-Holand Publishing Co, Amsterdam (1969)zbMATHGoogle Scholar
  16. 16.
    Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-Based Model Checking Using Modal Transition Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Godefroid, P., Jagadeesan, R.: On the Expressiveness of 3-Valued Models. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 206–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Gurfinkel, A., Chechik, M., Devereux, B.: Temporal Logic Query Checking: A Tool for Model Exploration. IEEE Transactions on Software Engineering (2003) (accepted for publication)Google Scholar
  19. 19.
    Huth, M., Jagadeesan, R., Schmidt, D.: A Domain Equation for Refinement of Partial Systems. In: Mathematical Structures in Computer Science (2003) (accepted for publication)Google Scholar
  20. 20.
    Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal Transition Systems: A Foundation for Three-Valued Program Analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Huth, M., Pradhan, S.: An Ontology for Consistent Partial Model Checking. Electronic Notes in Theoretical Computer Science 23 (2003)Google Scholar
  22. 22.
    Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, NewYork (1952)zbMATHGoogle Scholar
  23. 23.
    Konikowska, B., Penczek, W.: Model Checking for Multi-Valued CTL*. In: Fitting, M., Orlowska, E. (eds.) Multi-Valued Logics (2002) (to appear)Google Scholar
  24. 24.
    Konikowska, B., Penczek, W.: Reducing Model Checking from Multi-Valued CTL* to CTL*. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, p. 226. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Kozen, D.: Results on the Propositional μ-calculus. Theoretical Computer Science 27, 334–354 (1983)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: Proceedings of 3rd Annual Symposium on Logic in Computer Science (LICS 1988), pp. 203–210. IEEE Computer Society Press, Los Alamitos (1988)CrossRefGoogle Scholar
  27. 27.
    Milner, R.: Communication and Concurrency. Prentice-Hall, New York (1989)zbMATHGoogle Scholar
  28. 28.
    Müller-Olm, M., Schmidt, D., Steffen, B.: Model-Checking:A Tutorial Introduction. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 330–354. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  29. 29.
    Rasiowa, H.: An Algebraic Approach to Non-Classical Logics. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Arie Gurfinkel
    • 1
  • Marsha Chechik
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations