Advertisement

Equivalence Checking of Non-flat Systems Is EXPTIME-Hard

  • Zdeněk Sawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)

Abstract

The equivalence checking of systems that are given as a composition of interacting finite-state systems is considered. It is shown that the problem is EXPTIME-hard for any notion of equivalence that lies between bisimulation equivalence and trace equivalence, as conjectured by Rabinovich (1997). The result is proved for parallel composition of finite-state systems where hiding of actions is allowed, and for 1-safe Petri nets. The technique of the proof allows to extend this result easily to other types of ‘non-flat’ systems.

Keywords

equivalence checking finite-state systems complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the Association for Computing Machinery 28(1), 114–133 (1981)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Immerman, N.: Descriptive Complexity, pp. 53–54. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Jančar, P.: Nonprimitive recursive complexity and undecidability for petri net equivalences. Theoretical Computer Science 256, 23–30 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Jategaonkar, L., Meyer, A.R.: Deciding true concurrency equivalences on safe, finite nets. Theoretical Computer Science 154(1), 107–143 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Laroussinie, F., Schnoebelen, P.: The state explosion problem from trace to bisimulation equivalence. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 192–207. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Rabinovich, A.: Complexity of equivalence problems for concurrent systems of finite agents. Information and Computation 139(2), 111–129 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Sawa, Z., Jančar, P.: P-hardness of equivalence testing on finite-state processes. In: Pacholski, L., Ružička, P. (eds.) SOFSEM 2001. LNCS, vol. 2234, p. 326. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Shukla, S.K., Hunt, H.B., Rosenkrantz, D.J., Stearns, R.E.: On the complexity of relational problems for finite state processes. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 466–477. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Valmari, A., Kervinen, A.: Alphabet-based synchronisation is exponentially cheaper. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, p. 161. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    van Glabbeek, R.J.: The Linear Time - Branching Time Spectrum. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Zdeněk Sawa
    • 1
  1. 1.Dept. of Computer ScienceFEI Technical University of OstravaOstravaCzech Republic

Personalised recommendations