Compositionality for Probabilistic Automata

  • Nancy Lynch
  • Roberto Segala
  • Frits Vaandrager
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)


We establish that on the domain of probabilistic automata, the trace distribution preorder coincides with the simulation preorder.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, S.: Time optimal self-stabilizing spanning tree algorithms. Master’s thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Available as Technical Report MIT/LCS/TR- 632 (May 1994)Google Scholar
  2. 2.
    Larsen, K.G., Jonsson, B.: Specification and refinement of probabilistic processes. In: Proceedings 6th Annual Symposium on Logic in Computer Science, Amsterdam, pp. 266–277. IEEE Press, Los Alamitos (1991)Google Scholar
  3. 3.
    Lynch, N.A., Saias, I., Segala, R.: Proving time bounds for randomized distributed algorithms. In: Proceedings of the 13th Annual ACM Symposium on the Principles of Distributed Computing, Los Angeles, CA, August 1994, pp. 314–323 (1994)Google Scholar
  4. 4.
    Lynch, N.A., Segala, R., Vaandrager, F.W.: Compositionality for probabilistic automata. Technical Report MIT-LCS-TR-907, MIT, Laboratory for Computer Science (2003)Google Scholar
  5. 5.
    Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quarterly 2(3), 219–246 (1989)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations, I: Untimed systems. Information and Computation 121(2), 214–233 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Pogosyants, A., Segala, R., Lynch, N.A.: Verification of the randomized consensus algorithm of Aspnes and Herlihy: a case study. Distributed Computing 13(3), 155–186 (2000)CrossRefGoogle Scholar
  8. 8.
    Segala, R.: Compositional trace–based semantics for probabilistic automata. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Available as Technical Report MIT/LCS/TR-676 (June 1995)Google Scholar
  10. 10.
    Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2(2), 250–273 (1995)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Stoelinga, M.I.A.: Alea jacta est: Verification of Probabilistic, Real-Time and Parametric Systems. PhD thesis, University of Nijmegen (April 2002)Google Scholar
  12. 12.
    Stoelinga, M.I.A.: An introduction to probabilistic automata. Bulletin of the European Association for Theoretical Computer Science 78, 176–198 (2002)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Stoelinga, M.I.A., Vaandrager, F.W.: Root contention in IEEE 1394. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 53–74. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Stoelinga, M.I.A., Vaandrager, F.W.: A testing scenario for probabilistic automata. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 407–418. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Nancy Lynch
    • 1
  • Roberto Segala
    • 2
  • Frits Vaandrager
    • 3
  1. 1.MIT Laboratory for Computer ScienceCambridgeUSA
  2. 2.Dipartimento di InformaticaUniversità di VeronaVeronaItaly
  3. 3.Nijmegen Institute for Computing and Information SciencesUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations