A Process-Algebraic Language for Probabilistic I/O Automata

  • Eugene W. Stark
  • Rance Cleaveland
  • Scott A. Smolka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)


We present a process-algebraic language for Probabilistic I/O Automata (PIOA). To ensure that PIOA specifications given in our language satisfy the “input-enabled” property, which requires that all input actions be enabled in every state of a PIOA, we augment the language with a set of type inference rules. We also equip our language with a formal operational semantics defined by a set of transition rules. We present a number of results whose thrust is to establish that the typing and transition rules are sensible and interact properly. The central connection between types and transition systems is that if a term is well-typed, then in fact the associated transition system is input-enabled. We also consider two notions of equivalence for our language, weighted bisimulation equivalence and PIOA behavioral equivalence. We show that both equivalences are substitutive with respect to the operators of the language, and note that weighted bisimulation equivalence is a strict refinement of behavioral equivalence.


stochastic process algebras typing systems and algorithms process equivalences continuous-time Markov chains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BDG98]
    Bernardo, M., Donatiello, L., Gorrieri, R.: A formal approach to the integration of performance aspects in the modeling and analysis of concurrent systems. Information and Computation 144(2), 83–154 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [BH01]
    Brinksma, E., Hermanns, H.: Process algebra and Markov chains. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, pp. 183–231. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. [Buc99]
    Buchholz, P.: Exact performance equivalence: An equivalence relation for stochastic automata. Theoretical Computer Science 215, 263–287 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [CPS93]
    Cleaveland, R., Parrow, J., Steffen, B.U.: The Concurrency Workbench: A semantics-based tool for the verification of concurrent systems. ACM TOPLAS 15(1) (1993)Google Scholar
  5. [DNS95]
    De Nicola, R., Segala, R.: A process algebraic view of Input/Output Automata. Theoretical Computer Science 138(2) (1995)Google Scholar
  6. [GL00]
    Garland, S.J., Lynch, N.A.: Using I/O automata for developing distributed systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-Based Systems, pp. 285–312. Cambridge University Press, Cambridge (2000)Google Scholar
  7. [HH02]
    Katoen, J.-P., Hermanns, H., Herzog, U.: Process algebra for performance evaluation. Theoretical Computer Science 274, 43–97 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [Hil94]
    Hillston, J.: The nature of synchronization. In: Herzog, U., Rettelbach, M. (eds.) Proceedings of the 2nd Workshop on Process Algebra and Performance Modeling, July 1994, pp. 51–70. University of Erlangen (1994)Google Scholar
  9. [Hil96]
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  10. [JLY01]
    Jonsson, B., Larsen, K.G., Yi, W.: Probabilistic extensions of process algebras. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra. Elsevier, Amsterdam (2001)Google Scholar
  11. [LS91]
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [LT87]
    Lynch, N.A., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms. In: Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing, pp. 137–151 (1987)Google Scholar
  13. [PA91]
    Plateau, B., Atif, K.: Stochastic automata networks for modeling parallel systems. IEEE Transactions on Software Engineering 17, 1093–1108 (1991)CrossRefMathSciNetGoogle Scholar
  14. [SS98]
    Stark, E.W., Smolka, S.: Compositional analysis of expected delays in networks of probabilistic I/O automata. In: Proc. 13th Annual Symposium on Logic in Computer Science, Indianapolis, IN, June 1998, pp. 466–477. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  15. [Sta03]
    Stark, E.: On behavior equivalence for probabilistic I/O automata and its relationship to probabilistic bisimulation. Journal of Automata, Languages, and Combinatorics 8(2) (2003) (to appear)Google Scholar
  16. [Vaa91]
    Vaandrager, F.W.: On the relationship between process algebra and input/output automata. In: Sixth Annual Symposium on Logic in Computer Science (LICS 1991), Amsterdam, July 1991, pp. 387–398. Computer Society Press (1991)Google Scholar
  17. [WSS94]
    Wu, S.-H., Smolka, S.A., Stark, E.W.: Compositionality and full abstraction for probabilistic I/O automata. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  18. [WSS97]
    Wu, S.-H., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic I/O automata. Theoretical Computer Science 176(1-2), 1–38 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  19. [ZCS03]
    Zhang, D., Cleaveland, R., Stark, E.W.: The integrated CWBNC/ PIOATool for functional and performance analysis of concurrent systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 431–436. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Eugene W. Stark
    • 1
  • Rance Cleaveland
    • 1
  • Scott A. Smolka
    • 1
  1. 1.Department of Computer ScienceState University of New York at Stony BrookStony BrookUSA

Personalised recommendations