Deciding Bisimilarity between BPA and BPP Processes

  • Petr Jančar
  • Antonín Kučera
  • Faron Moller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)


We identify a necessary condition for when a given BPP process can be expressed as a BPA process. We provide an effective procedure for testing if this condition holds of a given BPP, and in the positive case we provide an effective construction for a particular form of one-counter automaton which is bisimilar to the given BPP. This in turn provides the mechanism to decide bisimilarity between a given BPP process and a given BPA process.


Parallel Composition Label Transition System Dependence Level Effective Construction Counter Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Decidability of bisimulation equivalence for processes generating context-free languages. Journal of the ACM 40(3), 653–682 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Blanco, J.: Normed BPP and BPA. In: Proceedings of ACP 1994, pp. 242–251. Springer, Heidelberg (1995)Google Scholar
  3. 3.
    Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra. ch. 9, pp. 545–623. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  4. 4.
    Burkart, O., Caucal, D., Steffen, B.: An elementary decision procedure for arbitrary contextfree processes. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 423–433. Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Černá, I., Křetínský, M., Kučera, A.: Comparing expressibility of normed BPA and normed BPP processes. Acta Informatica 36, 233–256 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Glabbeek, R.: The linear time – branching time spectrum I: The semantics of concrete sequential processes. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra. ch. 1, pp. 3–99. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  7. 7.
    Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimilarity of normed context-free processes. Theoretical Computer Science 158, 143–159 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding bisimulation equivalence of normed basic parallel processes. Journal of Mathematical Structures in Computer Science 6, 251–259 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jančar, P.: Undecidability of bisimilarity for Petri nets and some related problems. Theoretical Computer Science 148(2), 281–301 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Jančar, P.: Strong bisimilarity on basic parallel processes is PSPACE-complete. In: Proceedings of LICS 2003 (2002) (to appear)Google Scholar
  12. 12.
    Jančar, P., Kučera, A.: Equivalence-checking with infinite-state systems: Techniques and results. In: Grosky, W.I., Plášil, F. (eds.) SOFSEM 2002. LNCS, vol. 2540, pp. 41–73. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Jančar, P., Moller, F.: Techniques for decidability and undecidability of bisimilarity. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 30–45. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Karp, R.M., Miller, R.E.: Parallel Program Schemata. Journal of Computer and Systems Sciences 3, 147–195 (1969)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Milner, R., Moller, F.: Unique decomposition of processes. Theoretical Computer Science 107, 357–363 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Moller, F.: Infinite results. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Sénizergues, G.: Decidability of bisimulation equivalence for equational graphs of finite outdegree. In: Proceedings of FOCS 1998, pp. 120–129. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  18. 18.
    Sénizergues, G.: L(A)=L(B)? decidability results from complete formal systems. Theoretical Computer Science 251(1-2), 1–166 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Srba, J.: Roadmap of Infinite Results,
  20. 20.
    Srba, J.: Strong bisimilarity and regularity of basic process algebra is PSPACE-hard. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 716–727. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Srba, J.: Strong bisimilarity and regularity of basic parallel processes is PSPACE-hard. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 535–546. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Stirling, C.: Decidability of bisimulation equivalence for pushdown processes. Research Report No. EDI-INF-RR-0005, School of Informatics, Edinburgh University (January 2000)Google Scholar
  23. 23.
    Stirling, C.: Decidability of DPDA equivelance. Theoretical Computer Science 255(1-2), 1–31 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Petr Jančar
    • 1
  • Antonín Kučera
    • 2
  • Faron Moller
    • 3
  1. 1.Dept. of Computer ScienceFEI, Technical University of OstravaOstravaCzech Republic
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  3. 3.Dept. of Computer ScienceUniversity of Wales SwanseaSwansea, Wales

Personalised recommendations