Advertisement

Distributed Monitoring of Concurrent and Asynchronous Systems

  • Albert Benveniste
  • Stefan Haar
  • Eric Fabre
  • Claude Jard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2761)

Abstract

Developing applications over a distributed and asynchronous architecture without the need for synchronization services is going to become a central track for distributed computing. This research track will be central for the domain of autonomic computing and self-management. Distributed constraint solving, distributed observation, and distributed optimization, are instances of such applications. This paper is about distributed observation: we investigate the problem of distributed monitoring of concurrent and asynchronous systems, with application to distributed fault management in telecommunications networks.

Our approach combines two techniques: compositional unfoldings to handle concurrency properly, and a variant of graphical algorithms and belief propagation, originating from statistics and information theory.

Keywords

asynchronous concurrent distributed unfoldings event structures belief propagation fault diagnosis fault management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    extended version, available as IRISA report No 1540, http://www.irisa.fr/bibli/publi/pi/2003/1540/1540.html
  2. 2.
    Aghasaryan, A., Dousson, C., Fabre, E., Pencolé, Y., Osmani, A.: Modeling Fault Propagation in Telecommunications Networks for Diagnosis Purposes. XVIII World Telecommunications Congress September 22–27, 2002 – Paris, France (2002), Available: http://www.irisa.fr/sigma2/benveniste/pub/topic_distribdiag.html
  3. 3.
    Benveniste, A., Fabre, E., Jard, C., Haar, S.: Diagnosis of asynchronous discrete event systems, a net unfolding approach. IEEE Trans. on Automatic Control, 48(5) (May 2003), Preliminary version available from http://www.irisa.fr/sigma2/benveniste/pub/IEEE_TAC_AsDiag_2003.html
  4. 4.
    Benveniste, A., Haar, S., Fabre, E.: Markov Nets: probabilistic Models for Distributed and Concurrent Systems. INRIA Report 4235 (2001), available electronically at http://www.inria.fr/rrrt/rr-4754.html
  5. 5.
    Caillaud, B., Badouel, E., Darondeau, P.: Distributing Finite Automata through Petri Net Synthesis. Journal on Formal Aspects of Computing 13, 447–470 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Cassandras, C., Lafortune, S.: Introduction to discrete event systems. Kluwer Academic Publishers, Dordrecht (1999)zbMATHGoogle Scholar
  7. 7.
    Couvreur, J.-M., Grivet, S., Poitrenaud, D.: Unfolding of Products of Symmetrical Petri Nets. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 121–143. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, Cambridge (1995)zbMATHCrossRefGoogle Scholar
  9. 9.
    Engelfriet, J.: Branching Processes of Petri Nets. Acta Informatica 28, 575–591 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Esparza, J., Römer, S.: An unfolding algorithm for synchronous products of transition systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, p. 2. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Fabre, E., Benveniste, A., Jard, C.: Distributed diagnosis for large discrete event dynamic systems. In: Proc of the IFAC congress (July 2002)Google Scholar
  12. 12.
    Fabre, E.: Compositional models of distributed and asynchronous dynamical systems. In: Proc of the 2002 IEEE Conf. on Decision and Control, Las Vegas, December 1-6 (2002)Google Scholar
  13. 13.
    Fabre, E.: Monitoring distributed systems with distributed algorithms. In: Proc of the 2002 IEEE Conf. on Decision and Control, Las Vegas, December 2002, pp. 411–416 (2002)Google Scholar
  14. 14.
    Fabre, E.: Distributed diagnosis for large discrete event dynamic systems (in preparation)Google Scholar
  15. 15.
    Fabre, E.: Convergence of the turbo algorithm for systems defined by local constraints. IRISA Res. Rep. 1510 (2003)Google Scholar
  16. 16.
    Goodwin, G.C., Sin, K.S.: Adaptive Filtrering, Prediction, and Control. Prentice-Hall, Upper Sadle River (1984)Google Scholar
  17. 17.
    Haar, S.: Probabilistic Cluster Unfoldings. Fundamenta Informaticae 53(3-4), 281–314 (2002)MathSciNetGoogle Scholar
  18. 18.
    Lamport, L., Lynch, N.: Distributed Computing: Models and Methods. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B, pp. 1157–1199. Elsevier, Amsterdam (1990)Google Scholar
  19. 19.
    Lauritzen, S.L.: Graphical Models. Oxford Statistical Science Series, vol. 17. Oxford University Press, Oxford (1996)Google Scholar
  20. 20.
    Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. Royal Statistical Society, Series B 50(2), 157–224 (1988)zbMATHMathSciNetGoogle Scholar
  21. 21.
    McEliece, R.J., MacKay, D.J.C., Cheng, J.-F.: Turbo Decoding as an Instance of Pearl’s Belief Propagation Algorithm. IEEE Transactions on Selected Areas in Communication 16(2), 140–152 (1998)CrossRefGoogle Scholar
  22. 22.
    Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures, and domains. Part I. Theoretical Computer Science 13, 85–108 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Pearl, J.: Fusion, Propagation, and Structuring in Belief Networks. Artificial Intelligence 29, 241–288 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Rabiner, L.R., Juang, B.H.: An introduction to Hidden Markov Models. IEEE ASSP magazine 3, 4–16 (1986)CrossRefGoogle Scholar
  25. 25.
    Raynal, M.: Distributed Algorithms and Protocols. Wiley & Sons, Chichester (1988)zbMATHGoogle Scholar
  26. 26.
    Reisig, W.: Petri nets. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  27. 27.
    Sampath, M., Sengupta, R., Sinnamohideen, K., Lafortune, S., Teneketzis, D.: Failure diagnosis using discrete event models. IEEE Trans. on Systems Technology 4(2), 105–124 (1996)CrossRefGoogle Scholar
  28. 28.
    Weiss, Y., Freeman, W.T.: On the Optimality of Solutions of the Max-Product Belief-Propagation Algorithm in Arbitrary Graphs. IEEE Trans. on Information Theory 47(2), 723–735 (2001)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Albert Benveniste
    • 1
  • Stefan Haar
    • 1
  • Eric Fabre
    • 1
  • Claude Jard
    • 2
  1. 1.Irisa/INRIARennesFrance
  2. 2.Irisa/CNRSRennesFrance

Personalised recommendations