Clustering Top-Ranking Sentences for Information Access

  • Anastasios Tombros
  • Joemon M. Jose
  • Ian Ruthven
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2769)


In this paper we propose the clustering of top-ranking sentences (TRS) for effective information access. Top-ranking sentences are selected by a query-biased sentence extraction model. By clustering such sentences, we aim to generate and present to users a personalised information space. We outline our approach in detail and we describe how we plan to utilise user interaction with this space for effective information access. We present an initial evaluation of TRS clustering by comparing its effectiveness at providing access to useful information to that of document clustering.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leuski, A., Allan, J.: Evaluating a visual navigation system for a digital library. In: Nikolaou, C., Stephanidis, C. (eds.) ECDL 1998. LNCS, vol. 1513, p. 535. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Lopez, M.J.M., Rodriguez, M.B., Hidalgo, J.M.G.: Using and evaluating user directed summaries to improve information access. In: Abiteboul, S., Vercoustre, A.-M. (eds.) ECDL 1999. LNCS, vol. 1696, pp. 198–214. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Willett, P.: Recent trends in hierarchic document clustering: a critical review. Information Procsessing & Management 24, 577–597 (1988)CrossRefGoogle Scholar
  4. 4.
    White, R.W., Ruthven, I., Jose, J.M.: A task-oriented study on the influencing effects of query-biased summarisation in web searching. Information Procsessing & Management in press (2003)Google Scholar
  5. 5.
    Zamir, O., Etzioni, O.: Web document clustering: A feasibility demonstration. In: Proceedings of the 21st Annual ACM SIGIR Conference, Melbourne, Australia, pp. 46–54 (1998)Google Scholar
  6. 6.
    White, R.W., Ruthven, I., Jose, J.M.: Finding relevant documents using top ranking sentences: an evaluation of two alternative schemes. In: Proceedings of the 24th Annual ACM SIGIR Conference, Tampere, Finland, pp. 57–64 (2002)Google Scholar
  7. 7.
    Radev, D.R., Jing, H., Budzikowska, M.: Centroid-based summarization of multiple documents: sentence extraction, utility-based evaluation, and user studies. In: Proceedings of the ANLP/NAACL Workshop on Summarization, Seattle, U.S.A (2000)Google Scholar
  8. 8.
    Zha, H.: Generic summarization and keyphrase extraction using mutual reinforcement principle and sentence clustering. In: Proceedings of the 25th Annual ACM SIGIR Conference, Tampere, Finland, pp. 113–120 (2002)Google Scholar
  9. 9.
    Kural, Y., Robertson, S.E., Jones, S.: Deciphering cluster representations. Information Procsessing & Management 37, 593–601 (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Anastasios Tombros
    • 1
  • Joemon M. Jose
    • 1
  • Ian Ruthven
    • 2
  1. 1.Department of Computing ScienceUniversity of GlasgowGlasgowU.K.
  2. 2.Department of Computer and Information SciencesUniversity of StrathclydeGlasgowU.K.

Personalised recommendations