Constructing Infinite Graphs with a Decidable MSO-Theory

  • Wolfgang Thomas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)


This introductory paper reports on recent progress in the search for classes of infinite graphs where interesting model-checking problems are decidable. We consider properties expressible in monadic second-order logic (MSO-logic), a formalism which encompasses standard temporal logics and the modal μ-calculus. We discuss a class of infinite graphs proposed by D. Caucal (in MFCS 2002) which can be generated from the infinite binary tree by applying the two processes of MSO-interpretation and of unfolding. The main purpose of the paper is to give a feeling for the rich landscape of infinite structures in this class and to point to some questions which deserve further study.


Binary Tree Transition Graph Path Segment Unary Predicate Infinite Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berwanger, D., Blumensath, A.: The monadic theory of tree-like structures. In: [16], 285–302Google Scholar
  2. 2.
    Blumensath, A.: Preix-recognizable graphs and monadic second-order logic, Rep. AIB-06-2001, RWTH Aachen (2001) Google Scholar
  3. 3.
    Blumensath, A.: Axiomatising tree-interpretable structures. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 596–607. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Caucal, D.: On infinite transition graphs having a decidable monadic theory. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194–205. Springer, Heidelberg (1996); Full version in: Theor. Comput. Sci. 290, 79–115 (2003)Google Scholar
  5. 5.
    Caucal, D.: On infinite graphs having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Cachat, Th.: Higher order pushdown automata, the Caucal Hierarchy of graphs and parity games. In: Proc. 30th ICALP Springer LNCS (2003) (to appear)Google Scholar
  7. 7.
    Carton, O., Thomas, W.: The monadic theory of morphic ininite words and generalizations. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 275–284. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Courcelle, B.: Monadic second-order graph transductions: a survey. Theor. Comput. Sci. 126, 53–75 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Courcelle, B.: The monadic second-order logic of graphs IX: machines and their behaviours. Theor. Comput. Sci. 151, 125–162 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Carayol, A., Whrle, S.: Personal communication Google Scholar
  11. 11.
    Courcelle, B., Walukiewicz, I.: Monadic second-order logic, graph coverings and unfoldings of transition systems. Ann. Pure Appl. Logic 92, 35–62 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Damm, W.: The IO and OI hierarchies. Theor. Comput. Sci. 20, 95–208 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, Heidelberg (1984)zbMATHGoogle Scholar
  14. 14.
    Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second (irst) order theory of (generalized) successor. J. Symb. Logic 31, 169–181 (1966)zbMATHCrossRefGoogle Scholar
  15. 15.
    Fratani, S., Sénizergues, G.: Personal communicationGoogle Scholar
  16. 16.
    Grdel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Knapik, T., Niwinski, D., Urzyczyn, P.: Deciding monadic theories of hyperalgebraic trees. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 253–267. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) Proc. 5th FoSSaCS. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)Google Scholar
  19. 19.
    Klaedtke, F., Rue, H.: Monadic second-order logic with cardinalities. In: Proc. 30th ICALP 2003, Springer LNCS (to appear) (2003) Google Scholar
  20. 20.
    Löding, C.: Ground tree rewriting graphs of bounded tree width. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 559–570. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Montanari, A., Peron, A., Policriti, A.: Extending Kamp’s Theorem to model time granularity. J. Logic Computat. 12, 641–678 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Muller, D., Schupp, P.: The theory of ends, pushdown automata, and second-order logic. Theor. Comput. Sci. 37, 51–75 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141, 1–35 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Semenov, A.: Decidability of monadic theories. In: Chytil, M.P., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 162–175. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  25. 25.
    Thomas, W.: A short introduction to infinite automata. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 130–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Walukiewicz, I.: Monadic second-order logic on tree-like structures. Theor. Comput. Sci. 275, 311–346 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wolfgang Thomas
    • 1
  1. 1.RWTH Aachen, Lehrstuhl für Informatik VIIAachenGermany

Personalised recommendations