A Polynomial-Time Algorithm for Deciding True Concurrency Equivalences of Basic Parallel Processes

  • Sławomir Lasota
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)


A polynomial-time algorithm is presented to decide distributed bisimilarity of Basic Parallel Processes. As a direct conclusion, several other non-interleaving semantic equivalences are also decidable in polynomial time for this class of process, since they coincide with distributed bisimilarity.


Polynomial Time Parallel Composition Process Expression Process Algebra Local Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L.: History preserving, causal and mixed-ordering equivalence over stable event structures. Fundamenta Informaticae 17, 319–331 (1992)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Aceto, L.: Relating distributed, temporal and causal observations of simple processes. Fundamenta Informaticae 17, 369–397 (1992)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Balcázar, J., Gabarró, J., Sántha, M.: Deciding bisimilarity is P-complete. Formal Aspects of Computing 6A, 638–648 (1992)CrossRefGoogle Scholar
  4. 4.
    M. Bednarczyk. Hereditary history preserving bisimulation or what is the power of the future perfect in program logics. Technical report, Polish Academy of Sciences, Gdańsk (1991) Google Scholar
  5. 5.
    Bérard, B., Labroue, A., Schnoebelen, P.: Verifying performance equivalence for timed Basic Parallel Processes. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 35–47. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Castellani, I.: Bisimulations for Concurrency. PhD thesis, University of Edinburg (1988) Google Scholar
  7. 7.
    Castellani, I.: Process algebras with localities. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, ch. 15, pp. 945–1046 (2001)Google Scholar
  8. 8.
    Christensen, S.: Distributed bisimilarity is decidable for a class of infinite state systems. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 148–161. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  9. 9.
    Christensen, S.: Decidability and Decomposition in process algebras. PhD thesis, Dept. of Computer Science, University of Edinburgh, UK (1993) Google Scholar
  10. 10.
    Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation equivalence is decidable for Basic Parallel Processes. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 143–157. Springer, Heidelberg (1993)Google Scholar
  11. 11.
    Darondeau, P., Degano, P.: Causal trees. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 234–248. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  12. 12.
    Fröschle, S.: Decidability of plain and hereditary history-preserving bisimulation for BPP. In: Marchuk, G.I. (ed.) Optimization Techniques 1974. LNCS, vol. 27. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    van Glabbeek, R., Goltz, U.: Equivalence notions for concurrent systems and refinement of actions. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol. 379, pp. 237–248. Springer, Heidelberg (1989)Google Scholar
  14. 14.
    Gorrieri, R., Roccetti, M., Stancampiano, E.: A theory of processes with durational actions. Theoretical Computer Science 140(1), 73–94 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hennessy, M., Kiehn, A.: On the decidability of non-interleaving process equivalences. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 18–33. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  16. 16.
    Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial time algorithm for deciding bisimulation equivalence of normed basic parallel processes. Mathematical Structures in Computer Science 6, 251–259 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hüttel, H.: Undecidable equivalences for basic parallel processes. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 454–464. Springer, Heidelberg (1994)Google Scholar
  18. 18.
    Jančar, P.: Bisimilarity of basic parallel processes is PSPACE-complete. In: Proc. LICS 2003 (2003) (to appear)Google Scholar
  19. 19.
    Jategaonkar, L., Meyer, A.R.: Deciding true concurrency equivalences on safe, finite nets. Theoretical Computer Science 154, 107–143 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Jurdziński, M., Nielsen, M.: Hereditary history preserving bisimilarity is undecidable. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 358–369. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Kiehn, A.: A note on distributed bisimulations (1999) (unpublished draft)Google Scholar
  22. 22.
    Lasota, S.: Decidability of strong bisimilarity for timed BPP. In: Brim, L., et al. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 562–578. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Lasota, S.: On coincidence of distributed and performance equivalence for Basic Parallel Processes (2002), (unpublished draft)
  24. 24.
    Lasota, S.: A polynomial-time algorithm for deciding true concurrency equivalences of Basic Parallel Processes. Research Report LSV-02-13, LSV, ENS de Cachan, France (2002) Google Scholar
  25. 25.
    Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  26. 26.
    Srba, J.: Strong bisimilarity and regularity of Basic Parallel Processes is PSPACE-hard. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, p. 535. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Sławomir Lasota
    • 1
  1. 1.Institute of InformaticsWarsaw UniversityPoland

Personalised recommendations