Advertisement

On Matroid Properties Definable in the MSO Logic

  • Petr Hliněný
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)

Abstract

It has been proved by the author that all matroid properties definable in the monadic second-order (MSO) logic can be recognized in polynomial time for matroids of bounded branch-width which are represented by matrices over finite fields. (This result extends so called “MS 2-theorem” of graphs by Courcelle and others.) In this work we review the MSO theory of finite matroids and show some interesting matroid properties which are MSO-definable. In particular, all minor-closed properties are recognizable in such way.

Keywords

matroid branch-width MSO logic parametrized complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodlaender, H.L.: A Linear Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM J. Computing 25, 1305–1317 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Courcelle, B.: The Monadic Second-Order Logic of Graphs I. Recognizable sets of Finite Graphs, Information and Computation 85, 12–75 (1990)zbMATHMathSciNetGoogle Scholar
  3. 3.
    de Sousa, J., Welsh, D.J.A.: A Characterisation of Binary Transversal Matroids. J. Math. Anal. Appl. 40, 55–59 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Downey, R.G., Fellows, M.R.: Parametrized Complexity. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Geelen, J.F., Gerards, A.H.M., Robertson, N., Whittle, G.P.: On the Excluded Minors for the Matroids of Branch-Width k. J. Combin. Theory Ser. B (2003) (to appear) Google Scholar
  6. 6.
    Geelen, J.F., Gerards, A.H.M., Whittle, G.P.: Branch-Width and Well-Quasi-Ordering in Matroids and Graphs. J. Combin. Theory Ser. B 84, 270–290 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hliněný, P.: Branch-Width, Parse Trees, and Monadic Second-Order Logic for Matroids (Extended Abstract). In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 319–330. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Hliněný, P.: Branch-Width, Parse Trees, and Monadic Second-Order Logic for Matroids (2002) (submitted)Google Scholar
  9. 9.
    Hliněný, P.: A Parametrized Algorithm for Matroid Branch-Width (2002) (submitted)Google Scholar
  10. 10.
    Hliněný, P.: The Tutte Polynomial for Matroids of Bounded Branch-Width (2002) (submitted)Google Scholar
  11. 11.
    Hliněný, P.: It is Hard to Recognize Free Spikes (2002) (submitted) Google Scholar
  12. 12.
    Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992/1997)zbMATHGoogle Scholar
  13. 13.
    Robertson, N., Seymour, P.D.: Graph Minors X. Obstructions to Tree-Decomposition. J. Combin. Theory Ser. B 52, 153–190 (1991)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Petr Hliněný
    • 1
  1. 1.Institute of Mathematics and Comp. Science (MÚ SAV)Matej Bel University and Slovak Academy of SciencesBanská BystricaSlovakia

Personalised recommendations