LTL with Past and Two-Way Very-Weak Alternating Automata

  • Paul Gastin
  • Denis Oddoux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)


In this paper, we propose a translation procedure of PLTL (LTL with past modalities) formulas to Büchi automata using two-way very-weak alternating automata (2VWAA) as an intermiediary step. Our main result is an efficient translation of 2VWAA to generalized Büchi automata (GBA).


Inductive Hypothesis Model Check Temporal Logic Linear Temporal Logic Repeated State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 16, vol. B, pp. 995–1072. Elsevier Science, Amsterdam (1990)Google Scholar
  2. 2.
    Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: Proc. of PoPL 1980, Las Vegas, pp. 163–173 (November 1980)Google Scholar
  3. 3.
    Gastin, P., Oddoux, D.: Fast LTL to büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Gastin, P., Oddoux, D.: LTL with past and two-way very-weak alternating automata. Tech. Rep. LIAFA 2003–010, Université Paris 7 (France) Google Scholar
  5. 5.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Protocol Specification Testing and Verification, Warsaw, Poland, pp. 3–18. Chapman & Hall, Boca Raton (1995)Google Scholar
  6. 6.
    Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, California (1968) Google Scholar
  7. 7.
    Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: A decision algorithm for full propositional temporal logic. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 97–109. Springer, Heidelberg (1993)Google Scholar
  8. 8.
    Kupferman, O., Piterman, N., Vardi, M.Y.: Extended temporal logic revisited. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 519–535. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Laroussinie, F., Markey, N., Schnoebelen, Ph.: Temporal logic with forgettable past. In: Proc. of LICS 2002, pp. 383–392 (2002)Google Scholar
  10. 10.
    Laroussinie, F., Schnoebelen, P.: A hierarchy of temporal logics with past. Theoretical Computer Science 148, 303–324 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In Proc. of the 3rd Workshop on Logics of Programs. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)Google Scholar
  12. 12.
    Manna, Z., Pnueli, A.: The temporal logic of reactive and concurent systems: Specification. Springer, Heidelberg (1992)Google Scholar
  13. 13.
    Pnueli, A.: The temporal logic of programs. In: Proc. of FOCS 1977, pp. 46–57 (1977)Google Scholar
  14. 14.
    Ramakrishna, Y.S., Moser, L.E., Dillon, L.K., Melliar-Smith, P.M., Kutty, G.: An automata theoretic decision procedure for propositional temporal logic with Since and Until. Fundamenta Informaticae 17, 271–282 (1992)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Sistla, A.P., Clarke, E.M.: The complexity of propositional linear time logic. Journal of the Association of Computing Machinery 32, 733–749 (1985)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proc. of LICS 1986, pp. 332–344 (1986)Google Scholar
  18. 18.
    Vardi, M.Y., Wolper, P.: Reasonning about infinite computations. Information and Computation 115, 1–37 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Paul Gastin
    • 1
  • Denis Oddoux
    • 1
  1. 1.LIAFAUniversité Paris 7ParisFrance

Personalised recommendations