Local LTL with Past Constants Is Expressively Complete for Mazurkiewicz Traces

  • Paul Gastin
  • Madhavan Mukund
  • K. Narayan Kumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)


To obtain an expressively complete linear-time temporal logic (LTL) over Mazurkiewicz traces that is computationally tractable, we need to intepret formulas locally, at individual events in a trace, rather than globally, at configurations. Such local logics necessarily require past modalities, in contrast to the classical setting of LTL over sequences. Earlier attempts at defining expressively complete local logics have used very general past modalities as well as filters (side-conditions) that “look sideways” and talk of concurrent events. In this paper, we show that it is possible to use unfiltered future modalities in conjunction with past constants and still obtain a logic that is expressively complete over traces.


Temporal logics Mazurkiewicz traces concurrency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adsul, B., Sohoni, M.: Complete and tractable local linear time temporal logics over traces. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 926–937. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Cohen, J., Perrin, D., Pin, J.-E.: On the expressive power of temporal logic. Journal of Computer and System Sciences 46, 271–295 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Diekert, V., Gastin, P.: Local temporal logic is expressively complete for cograph dependence alphabets. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 55–69. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Diekert, V., Gastin, P.: LTL is expressively complete for Mazurkiewicz traces. Journal of Computer and System Sciences 64, 396–418 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)Google Scholar
  6. 6.
    Ebinger, W.: Charakterisierung von Sprachklassen unendlicher Spuren durch Logiken. Dissertation, Institut für Informatik, Universität Stuttgart (1994) Google Scholar
  7. 7.
    Ebinger, W., Muscholl, A.: Logical definability on infinite traces. Theoretical Computer Science 154, 67–84 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: Proc. of PoPL 1980, Las Vegas, pp. 163–173 (November 1980)Google Scholar
  9. 9.
    Gastin, P., Kuske, D.: Satisfiability and model checking for MSO-definable temporal logics are in PSPACE. To appear in Proc. of CONCUR 2003 (2003) Google Scholar
  10. 10.
    Gastin, P., Mukund, M.: An elementary expressively complete temporal logic for Mazurkiewicz traces. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 938–949. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Gastin, P., Mukund, M., Narayan Kumar, K.: Local LTL with past constants is expressively complete for Mazurkiewicz traces. Tech. Rep. 2003-008, LIAFA, Université Paris 7 (France) (2003) Google Scholar
  12. 12.
    Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, California (1968) Google Scholar
  13. 13.
    Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus (1977) Google Scholar
  14. 14.
    McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge (1971)zbMATHGoogle Scholar
  15. 15.
    Perrin, D.: Recent results on automata and infinite words. In: Chytil, M.P., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 134–148. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  16. 16.
    Perrin, D., Pin, J.-E.: First order logic and star-free sets. Journal of Computer and System Sciences 32, 393–406 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57 (1977)Google Scholar
  18. 18.
    Schützenberger, M.-P.: On finite monoids having only trivial subgroups. Information and Control 8, 190–194 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Thiagarajan, P.S., Walukiewicz, I.: An expressively complete linear time temporal logic for Mazurkiewicz traces. In: Proc. of LICS 1997, pp. 183–194 (1997)Google Scholar
  20. 20.
    Thomas, W.: Star-free regular sets of ω-sequences. Information and Control 42, 148–156 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Walukiewicz, I.: Difficult configurations – on the complexity of LTrL. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 140–151. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Walukiewicz, I.: Local logics for traces. Journal of Automata, Languages and Combinatorics 7(2), 259–290 (2002)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Wilke, T.: Classifying discrete temporal properties. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 32–46. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. — Informatique Théorique et Applications 21, 99–135 (1987)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Paul Gastin
    • 1
  • Madhavan Mukund
    • 2
  • K. Narayan Kumar
    • 2
  1. 1.LIAFAUniversité Paris 7ParisFrance
  2. 2.Chennai Mathematical InstituteChennaiIndia

Personalised recommendations