Advertisement

Quantum Testers for Hidden Group Properties

  • Katalin Friedl
  • Frédéric Magniez
  • Miklos Santha
  • Pranab Sen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)

Abstract

We construct efficient or query efficient quantum property testers for two existential group properties which have exponential query complexity both for their decision problem in the quantum and for their testing problem in the classical model of computing. These are periodicity in groups and the common coset range property of two functions having identical ranges within each coset of some normal subgroup.

Keywords

Abelian Group Normal Subgroup Quantum Algorithm Query Complexity Property Testing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proc. IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179 (1984)Google Scholar
  2. 2.
    Buhrman, H., Fortnow, L., Newman, I., Röhrig, H.: Quantum property testing. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (2003) Google Scholar
  3. 3.
    Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. Comput. System Sci. 47(3), 549–595 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    van Dam, W., Magniez, F., Mosca, M., Santha, M.: Self-testing of universal and fault-tolerant sets of quantum gates. In: Proc. 32nd ACM STOC, pp. 688–696 (2000)Google Scholar
  5. 5.
    Ettinger, M., Høyer, P.: On quantum algorithms for noncommutative hidden subgroups. Adv. in Appl. Math. 25(3), 239–251 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fischer, E.: The art of uninformed decisions: A primer to property testing, the computational complexity. In: The Computational Complexity Column, vol. 75, pp. 97–126. The Bulletin of the EATCS (2001) Google Scholar
  7. 7.
    Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and orbit coset in quantum computing. In: Proc. 35th ACM STOC (2003) Google Scholar
  8. 8.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hales, L.: The Quantum Fourier Transform and Extensions of the Abelian Hidden Subgroup Problem. PhD thesis, University of California, Berkeley (2002) Google Scholar
  10. 10.
    Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm and applications. In: Proc. 41st IEEE FOCS, pp. 515–525 (2000)Google Scholar
  11. 11.
    Kitaev, A.: Quantum measurements and the Abelian Stabilizer Problem. Technical report no. 9511026, Quantum Physics e-Print archive (1995) Google Scholar
  12. 12.
    Mayers, D., Yao, A.: Quantum cryptography with imperfect apparatus. In: Proc. 39th IEEE FOCS, pp. 503–509 (1998)Google Scholar
  13. 13.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  14. 14.
    Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comp. 25(2), 23–32 (1996)MathSciNetGoogle Scholar
  15. 15.
    Shor, P.: Algorithms for quantum computation: Discrete logarithm and factoring. SIAM J. Comp. 26(5), 1484–1509 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Katalin Friedl
    • 1
  • Frédéric Magniez
    • 2
  • Miklos Santha
    • 2
  • Pranab Sen
    • 2
  1. 1.CAIHungarian Academy of SciencesBudapestHungary
  2. 2.CNRS–LRI, UMR 8623Université Paris-SudOrsayFrance

Personalised recommendations