Advertisement

Using Transitive–Closure Logic for Deciding Linear Properties of Monoids

  • Christian Delhommé
  • Teodor Knapik
  • D. Gnanaraj Thomas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)

Abstract

We use first–order logic with transitive closure operator FO(TC1) for deciding first–order linear monoid properties. These are written in the style of linear sentences of Ron V. Book, but with a less restrictive language. The decidability of such properties concerns monoids presented by recognizable convergent suffix semi–Thue systems.

Keywords

string rewriting monoid presentations transitive closure logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Sethi, R., Ullman, J.D.: Code optimization and finite Church–Rosser systems. In: Rustin, R. (ed.) Design and Optimization of Compilers, pp. 89–106. Prentice–Hall, Upper Saddle River (1972)Google Scholar
  2. 2.
    Arnold, A., Niwiński, D.: Rudiments of μ–calculus. Number 146 in Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam (2001)Google Scholar
  3. 3.
    Barthelmann, K.: On equational simple graphs. Technical Report 9/97, Johannes Gutenberg Universität, Mainz (1998) Google Scholar
  4. 4.
    Blumensath, A.: Axiomatising tree-interpretable structures. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 596–607. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Book, R.V.: Decidable sentences of Church–Rosser congruences. Theoretical Comput. Sci. 24, 301–312 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Book, R.V., Otto, F.: On the security of name–stamp protocols. Theoretical Comput. Sci. 39, 319–325 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Book, R.V., Otto, F.: On the verifiability of two–party algebraic protocols. Theoretical Comput. Sci. 40, 101–130 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Book, R.V., Otto, F.: String–Rewriting Systems. Texts and Monographs in Computer Science. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  9. 9.
    Caucal, D.: On infinite transition graphs having a decidable monadic second–order theory. Theoretical Comput. Sci. 290(1), 79–115 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Caucal, D., Knapik, T.: A Chomsky–like hierarchy of infinite graphs. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 177–187. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  12. 12.
    Fagin, R.: Monadic generalized spectra. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 21, 89–96 (1975)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Immerman, N., Vardi, M.Y.: Model checking and transitive-closure logic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 291–302. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Knapik, T., Calbrix, H.: Thue specifications and their monadic second–order properties. Fundamenta Informaticae 39(3), 305–325 (1999)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Kupferman, O., Vardi, M.Y.: An automata–theoretic approach to reasoning about infinite–state systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 36–52. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Madlener, K., Otto, F.: Decidable sentences for context–free groups. In: Choffrut, C., Jantzen, M. (eds.) STACS 1991. LNCS, vol. 480, pp. 160–171. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  17. 17.
    Oleshchuk, V.A.: On public–key cryptosystem based on Church–Rosser string–rewriting systems. In: Du, D.-Z., Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 264–269. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  18. 18.
    Thue, A.: Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln. Skr. Vid. Kristiania, I Mat. Natuv. Klasse, 10, 34 (1914) Google Scholar
  19. 19.
    Walukiewicz, I.: Monadic second–order logic on tree–like structures. Theoretical Comput. Sci. 275(1–2), 311–346 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Christian Delhommé
    • 1
  • Teodor Knapik
    • 1
  • D. Gnanaraj Thomas
    • 2
  1. 1.ERMITUniversité de la RéunionSaint Denis Messageries
  2. 2.Dept. of MathematicsMadras Christian CollegeTambaram, MadrasIndia

Personalised recommendations