Advertisement

Randomized Algorithms for Determining the Majority on Graphs

  • Gianluca De Marco
  • Andrzej Pelc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)

Abstract

Every node of an undirected connected graph is colored white or black. Adjacent nodes can be compared and the outcome of each comparison is either 0 (same color) or 1 (different colors). The aim is to discover a node of the majority color, or to conclude that there is the same number of black and white nodes. We consider randomized algorithms for this task and establish upper and lower bounds on their expected running time. Our main contribution are lower bounds showing that some simple and natural algorithms for this problem cannot be improved in general.

Keywords

Connected Graph Deterministic Algorithm Randomize Algorithm White Node Expander Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M.: Variants of the majority problem. Discrete Applied Mathematics (to appear) Google Scholar
  2. 2.
    Alonso, L., Reingold, E.M., Schott, R.: Determining the majority. Information Processing Letters 47, 253–255 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alonso, L., Reingold, E.M., Schott, R.: The average-case complexity of determining the majority. SIAM Journal on Computing 26, 1–14 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chwa, K.Y., Hakimi, S.L.: Schemes for fault-tolerant computing: A comparison of modularly redundant and t-diagnosable systems. Information and Control 49, 212–238 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gillman, D.: A Chernoff bound for random walks on expander graphs. SIAM Journal on Computing 27, 1203–1220 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hagerup, T., Rub, C.: A guided tour of Chernoff bounds. Information Processing Letters 33, 305–308 (1989/90)CrossRefGoogle Scholar
  7. 7.
    Kutten, S., Peleg, D.: Fault-local distributed mending. In: Proc. 14th ACM Symposium on Principles of Distributed Computing, pp. 20–27 (1995)Google Scholar
  8. 8.
    Malek, M.: A comparison connection assignment for diagnosis of multiprocessor systems. In: Proc. 7th Symp. Comput. Architecture, pp. 31–35 (1980)Google Scholar
  9. 9.
    Preparata, F.P., Metze, G., Chien, R.T.: On the connection assignment problem of diagnosable systems. IEEE Trans. on Electr. Computers 16, 848–854 (1967)zbMATHCrossRefGoogle Scholar
  10. 10.
    Saks, M.E., Werman, M.: On computing majority by comparisons. Combinatorica 11, 383–387 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Yao, A.C.-C.: Probabilistic computations: Towards a unified measure of complexity. In: Proc. 18th Ann. IEEE Symp. on Foundations of Computer Science, pp. 222–227 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Gianluca De Marco
    • 1
  • Andrzej Pelc
    • 2
  1. 1.Istituto di Informatica e TelematicaConsiglio Nazionale delle RicerchePisaItaly
  2. 2.Département d’informatiqueUniversité du Québec en OutaouaisHull, QuébecCanada

Personalised recommendations