Unambiguous Automata on Bi-infinite Words

  • Olivier Carton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)


We consider finite automata accepting bi-infinite words. We introduce unambiguous automata where each accepted word is the label of exactly one accepting path. We show that each rational set of bi-infinite words is accepted by such an automaton. This result is a counterpart of McNaughton’s theorem for bi-infinite words.


Acceptance Condition Middle State Word Label Relative Integer Acceptance Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, A.: Rational ω-languages are non-ambiguous. Theoret. Comput. Sci. 26, 221–223 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Béal, M.-P., Perrin, D.: Symbolic dynamics and finite automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, ch. 10, vol. 2. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Berstel, J., Boasson, L.: Context-free languages. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 2, vol. B, pp. 59–102. Elsevier, Amsterdam (1990)Google Scholar
  4. 4.
    Büchi, J.R.: 2–23. In: Proc. Int. Congress Logic, Methodology, and Philosophy of Science, Jerusalem, pp. 2–23. North Holland, Amsterdam (1964)Google Scholar
  5. 5.
    Carton, O., Michel, M.: Unambiguous Büchi automata. Theoret. Comput. Sci. 297, 37–81 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  7. 7.
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)zbMATHCrossRefGoogle Scholar
  8. 8.
    McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Inform. Control 9, 521–530 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Perrin, D., Pin, J.-É.: Infinite words (to appear), available at
  10. 10.
    Perrin, D.: Finite automata. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 1, vol. B, pp. 1–57. Elsevier, Amsterdam (1990)Google Scholar
  11. 11.
    Safra, S.: On the complexity of ω-automata. In: 29th Annual Symposium on Foundations of computer sciences, pp. 24–29 (1988)Google Scholar
  12. 12.
    Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 4, vol. B, pp. 133–191. Elsevier, Amsterdam (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Olivier Carton
    • 1
  1. 1.LIAFAUniversité Paris 7 

Personalised recommendations