Denotational Testing Semantics in Coinductive Form

  • Michele Boreale
  • Fabio Gadducci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)


Building on recent work by Rutten on coinduction and formal power series, we define a denotational semantics for the csp calculus and prove it fully abstract for testing equivalence. The proposed methodology allows for abstract definition of operators in terms of behavioural differential equations and for coinductive reasoning on them, additionally dispensing with continuous order-theoretic structures.


process calculi coinduction formal power series testing equivalence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adámek, J.: Final coalgebras are ideal completions of initial algebras. Journal of Logic and Computation 12, 217–242 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence. Formal Aspects of Computing 5, 1–20 (1993)zbMATHCrossRefGoogle Scholar
  3. 3.
    De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoret. Comput. Sci. 34, 83–133 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  5. 5.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  6. 6.
    Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  7. 7.
    Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. In: Hofmann, M., Rosolini, G., Pavlovic, D. (eds.) Interval Mathematics. LNCS, vol. 29. Elsevier Science, Amsterdam (1999)Google Scholar
  8. 8.
    Rutten, J.J.M.M.: Automata, power series, and coinduction: taking input derivatives seriously. Technical Report SEN-R9901, CWI (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Michele Boreale
    • 1
  • Fabio Gadducci
    • 2
  1. 1.Dipartimento di Sistemi e InformaticaUniversità di FirenzeFirenzeItalia
  2. 2.Dipartimento di InformaticaUniversità di PisaPisaItalia

Personalised recommendations