Advertisement

Symbolic Analysis of Crypto-Protocols Based on Modular Exponentiation

  • Michele Boreale
  • Maria Grazia Buscemi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)

Abstract

Automatic methods developed so far for analysis of security protocols only model a limited set of cryptographic primitives (often, only encryption and concatenation) and abstract from low-level features of cryptographic algorithms. This paper is an attempt towards closing this gap. We propose a symbolic technique and a decision method for analysis of protocols based on modular exponentiation, such as Diffie-Hellman key exchange. We introduce a protocol description language along with its semantics. Then, we propose a notion of symbolic execution and, based on it, a verification method. We prove that the method is sound and complete with respect to the language semantics.

Keywords

Security Protocol Symbolic Execution Cryptographic Protocol Modular Exponentiation Cryptographic Primitive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Fournet, C.: Mobile Values, New Names, and Secure Communication. In: Conf. Rec. of POPL 2001 (2001)Google Scholar
  2. 2.
    Amadio, R.M., Lugiez, S.: On the reachability problem in cryptographic protocols. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, p. 380. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Boreale, M.: Symbolic Trace Analysis of Cryptographic Protocols. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, p. 667. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Boreale, M., Buscemi, M.: Experimenting with STA, a Tool for Automatic Analysis of Security Protocols. In: SAC 2002. ACM Press, New York (2002)Google Scholar
  5. 5.
    Boreale, M., Buscemi, M.: A Framework for the Analysis of Security Protocol. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, p. 483. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Boreale, M., Buscemi, M.: On the Symbolic Analysis of Low-Level Cryptographic Primitives: Modular Exponentiation and the Diffie-Hellman Protocol. To appear in Proc. of FCS 2003, ENTS Series. Elsevier Science (2003) Google Scholar
  7. 7.
    Chevalier, Y., Kuesters, R., Rusinowitch, M., Turuani, M.: An NP Decision Procedure for Protocol Insecurity with Xor. In: Proc. of LICS 2003. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  8. 8.
    Comon, H., Cortier, V., Mitchell, J.: Tree automata with one memory, set constraints and ping-pong protocols. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, p. 682. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Comon-Lundh, H., Shmatikov, V.: Intruder Deductions, Constraint Solving and Insecurity Decision in Presence of Exclusive or. In: Proc. LICS 2003. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  10. 10.
    Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Transactions on Information Theory 29(2), 198–208 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kapur, D., Narendran, P., Wang, L.: An E-unification Algorithm for Analyzing Protocols that Use Modular Exponentiation. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic protocol analysis. In: Proc. of 8th ACM Conference on Computer and Communication Security. ACM Press, New York (2001)Google Scholar
  15. 15.
    Millen, J., Shmatikov, V.: Symbolic Protocol Analysis with Products and Diffie-Hellman Exponentiation. In: Proc. of 16th IEEE Computer Security Foundations Workshop. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  16. 16.
    Vanackère, V.: The TRUST Protocol Analyser, Automatic and Efficient Verification of Cryptographic Protocols. In: Proc. of Verify 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Michele Boreale
    • 1
  • Maria Grazia Buscemi
    • 2
  1. 1.Dipartimento di Sistemi e InformaticaUniversità di FirenzeItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaItaly

Personalised recommendations