Error-Bounded Probabilistic Computations between MA and AM

  • Elmar Böhler
  • Christian Glaßer
  • Daniel Meister
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)


We introduce the probabilistic complexity class SBP. This class emerges from BPP by keeping the promise of a probability gap but decreasing the probability limit to exponentially small values. We locate SBP in the polynomial-time hierarchy, more precisely, between MA and AM. We provide evidence that SBP does not coincide with these and other known complexity classes. We construct an oracle relative to which SBP is not contained in \({\mathrm{\Sigma^P_{2}}}\).

We provide a new characterization of BPPpath. This characterization shows that SBP is a subset of BPPpath. Consequently, there is an oracle relative to which BPPpath is not contained in \({\mathrm{\Sigma^P_{2}}}\).


Turing Machine Complexity Class Proof System Probability Limit Probabilistic Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AFF+01.
    Aspnes, J., Fischer, D.F., Fischer, M.J., Kao, M.Y., Kumar, A.: Towards understanding the predictability of stock markets from the perspective of computational complexity. In: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pp. 745–754. ACM Press, New York (2001)Google Scholar
  2. Bab85.
    Babai, L.: Trading group theory for randomness. In: Proceedings 17th Symposium on Theory of Computing, pp. 421–429. ACM Press, New York (1985)Google Scholar
  3. BGM02.
    Böhler, E., Glaßer, C., Meister, D.: Error-bounded probabilistic computations between MA and AM. Technical Report 299, Julius-Maximilians-Universität Würzburg (2002), Available at
  4. BHZ87.
    Boppana, R.B., Håstad, J., Zachos, S.: Does co-NP have short interactive proofs? Information Processing Letters 25(2), 127–132 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  5. BM88.
    Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity classes. Journal of Computer and System Sciences 36, 254–276 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  6. BS79.
    Baker, T.P., Selman, A.L.: A second step towards the polynomial hierarchy. Theoretical Computer Science 8, 177–187 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  7. dLMSS56.
    de Leeuw, K., Moore, E.F., Shannon, C.E., Shapiro, N.: Computability by probabilistic machines. In: Shannon, C.E. (ed.) Automata Studies, Annals of Mathematical Studies, Rhode Island, vol. 34, pp. 183–198 (1956)Google Scholar
  8. FFK94.
    Fenner, S., Fortnow, L., Kurtz, S.: Gap-definable counting classes. Journal of Computer and System Sciences 48, 116–148 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. Gil72.
    Gill, J.: Probabilistic Turing Machines and Complexity of Computations. PhD thesis, University of California Berkeley (1972) Google Scholar
  10. Gil77.
    Gill, J.: Computational complexity of probabilistic turing machines. SIAM Journal on Computing 6, 675–695 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  11. GMW91.
    Goldreich, O., Micali, S., Widgerson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the Association for Computing Machinery 38(1), 691–729 (1991)zbMATHMathSciNetGoogle Scholar
  12. Gup95.
    Gupta, S.: Closure properties and witness reductions. Journal of Computer and System Sciences 50, 412–432 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  13. HH88.
    Hartmanis, J., Hemachandra, L.A.: Complexity classes without machines: On complete languages for UP. Theoretical Computer Science 58, 129–142 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  14. HHT97.
    Han, Y., Hemaspaandra, L.A., Thierauf, T.: Threshold computation and cryptographic security. SIAM Journal on Computing 26(1), 59–78 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  15. KL82.
    Karp, R., Lipton, R.: Turing machines that take advice. L’enseignement mathématique 28, 191–209 (1982)zbMATHMathSciNetGoogle Scholar
  16. San89.
    Santha, M.: Relativized Arthur-Merlin versus Merlin-Arthur games. Information and Computation 80, 44–49 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  17. Sch88.
    Schöning, U.: Graph isomorphism is in the low hierarchy. Journal of Computer and System Sciences 37, 312–323 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  18. Sch89.
    Schöning, U.: Probabilistic complexity classes and lowness. Journal of Computer and System Sciences 39, 84–100 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  19. Sim75.
    Simon, J.: On Some Central Problems in Computational Complexity. PhD thesis, Cornell University (1975) Google Scholar
  20. Sip82.
    Sipser, M.: On relativization and the existence of complete sets. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 523–531. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  21. Sip83.
    Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of the 15th Symposium on Theory of Computing, pp. 330–335 (1983)Google Scholar
  22. Sto77.
    Stockmeyer, L.: The polynomial-time hierarchy. Theoretical Computer Science 3, 1–22 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  23. Vaz86.
    Vazirani, U.: Randomness, Adversaries and Computation. PhD thesis, University of California Berkeley (1986) Google Scholar
  24. Ver92.
    Vereshchagin, N.K.: On the power of PP. In: Proceedings 7th Structure in Complexity Theory, pp. 138–143. IEEE Computer Society Press, Los Alamitos (1992)Google Scholar
  25. Wra77.
    Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theoretical Computer Science 3, 23–33 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  26. Yao85.
    Yao, A.C.C.: Separating the polynomial-time hierarchy by oracles. In: Proceedings 26th Foundations of Computer Science, pp. 1–10. IEEE Computer Society Press, Los Alamitos (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Elmar Böhler
    • 1
  • Christian Glaßer
    • 1
  • Daniel Meister
    • 1
  1. 1.Theoretische InformatikUniversität WürzburgWürzburgGermany

Personalised recommendations