Starting with Nondeterminism: The Systematic Derivation of Linear-Time Graph Layout Algorithms

  • Hans L. Bodlaender
  • Michael R. Fellows
  • Dimitrios M. Thilikos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)


This paper investigates algorithms for some related graph parameters. Each asks for a linear ordering of the vertices of the graph (or can be formulated as such), and there are constructive linear time algorithms for the fixed parameter versions of the problems. Examples are cutwidth, pathwidth, and directed or weighted variants of these. However, these algorithms have complicated technical details. This paper attempts to present these algorithms in a different more easily accessible manner, by showing that the algorithms can be obtained by a stepwise modification of a trivial hypothetical non-deterministic algorithm.

The methodology is applied for a generalisation of the cutwidth problem to weighted mixed graphs. As a consequence, we obtain new algorithmic results for various problems like modified cutwidth, and rederive known results for other related problems with simpler proofs.


Algorithms and data structures graph algorithms algorithm design methodology graph layout problems finite state automata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrahamson, K.R., Fellows, M.R.: Finite automata, bounded treewidth and well-quasiordering. In: Proc. of the AMS Summer Workshop on Graph Minors, Graph Structure Theory, Contemporary Mathematics, vol. 147, pp. 539–564. American Mathematical Society, Providence (1993)Google Scholar
  2. 2.
    Bodlaender, H., Gustedt, J., Telle, J.A.: Linear-time register allocation for a fixed number of registers. In: Proc. of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 574–583. ACM, New York (1998)Google Scholar
  3. 3.
    Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sc. 209, 1–45 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bodlaender, H.L., Fellows, M.R., Evans, P.A.: Finite-state computability of annotations of strings and trees. In: Proc. Conference on Pattern Matching, pp. 384–391 (1996)Google Scholar
  6. 6.
    Bodlaender, H.L., Fellows, M.R., Thilikos, D.M.: Derivation of algorithms for cutwidth and related graph layout problems. Technical Report UU-CS-2002-032, Inst. of Inform. and Comp. Sc., Utrecht Univ., Utrecht, the Netherlands (2002) Google Scholar
  7. 7.
    Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21, 358–402 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bodlaender, H.L., Thilikos, D.M.: Constructive linear time algorithms for branchwidth. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 627–637. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Chen, J., Friesen, D.K., Jia, W., Kanj, I.: Using nondeterminism to design deterministic algorithms. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 120–131. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Chen, M.-H., Lee, S.-L.: Linear time algorithms for k-cutwidth problem. In: Ibaraki, T., Iwama, K., Yamashita, M., Inagaki, Y., Nishizeki, T. (eds.) ISAAC 1992. LNCS, vol. 650, pp. 21–30. Springer, Heidelberg (1992)Google Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: Basic results. SIAM J. Comput. 24, 873–921 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kinnersley, N.G., Kinnersley, W.M.: Tree automata for cutwidth recognition. Congressus Numerantium 104, 129–142 (1994)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Lagergren, J., Arnborg, S.: Finding minimal forbidden minors using a finite congruence. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 532–543. Springer, Heidelberg (1991)Google Scholar
  14. 14.
    Monien, B., Sudborough, I.H.: Min cut is NP-complete for edge weighted trees. Theor. Comp. Sc. 58, 209–229 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: A constructive linear time algorithm for small cutwidth. Technical Report LSI-00-48-R, Departament de Llenguatges i Sistemes Informatics, Univ. Politecnica de Catalunya, Barcelona, Spain (2000) Google Scholar
  16. 16.
    Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Constructive linear time algorithms for small cutwidth and carving-width. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 192–203. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hans L. Bodlaender
    • 1
  • Michael R. Fellows
    • 2
  • Dimitrios M. Thilikos
    • 3
  1. 1.Institute of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.School of Electrical Engineering and Computer ScienceUniversity of NewcastleCallaghanAustralia
  3. 3.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations