Periodicity and Transitivity for Cellular Automata in Besicovitch Topologies

  • F. Blanchard
  • J. Cervelle
  • E. Formenti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)


We study cellular automata (CA) behavior in Besicovitch topology. We solve an open problem about the existence of transitive CA. The proof of this result has some interest in its own since it is obtained by using Kolmogorov complexity. At our knowledge it if the first result on discrete dynamical systems obtained using Kolmogorov complexity. We also prove that every CA (in Besicovitch topology) either has a unique fixed point or a countable set of periodic points. This result underlines that CA have a great degree of stability and may be considered a further step towards the understanding of CA periodic behavior.


Cellular Automaton Periodic Point Cellular Automaton Local Rule Kolmogorov Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blanchard, F., Formenti, E., Kůrka, P.: Cellular automata in the Cantor, Besicovitch and Weyl topological spaces. Complex Systems 11, 107–123 (1999)MathSciNetGoogle Scholar
  2. 2.
    Blanchard, F., Tisseur, P.: Some properties of cellular automata with equicontinuity points. Annales de l’Instute Henri Poincaré 36(5), 562–582 (2000)MathSciNetGoogle Scholar
  3. 3.
    Calude, C., Hertling, P., Jürgensen, H., Weihrauch, K.: Randomness on full shift spaces. Chaos, Solitons & Fractals 1, 1–13 (2000)Google Scholar
  4. 4.
    Cattaneo, G., Formenti, E., Margara, L., Mazoyer, J.: A Shift-invariant Metric on S ZZ Inducing a Non-trivial Topology. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Cervelle, J., Durand, B., Formenti, E.: Algorithmic information theory and cellular automata dynamics. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 248–259. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Delorme, M., Formenti, E., Mazoyer, J.: Open problems on cellular automata (2002) (submitted) Google Scholar
  7. 7.
    Devaney, R.L.: An introduction to chaotic dynamical systems. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  8. 8.
    Dubacq, J.-C., Durand, B., Formenti, E.: Kolmogorov complexity and cellular automata classification. Theoretical Computer Science 259(1–2), 271–285 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Durand, B.: Global properties of cellular automata. In: Goles, E., Martinez, S. (eds.) Cellular Automata and Complex Systems. Kluwer, Dordrecht (1998)Google Scholar
  10. 10.
    Formenti, E.: On the sensitivity of cellular automata in Besicovitch spaces. Theoretical Computer Science 301(1–3), 341–354 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Li, M., Vitányi, P.: An Introduction to Kolmogorov complexity and its applications, 2nd edn. Springer, Berlin (1997)zbMATHGoogle Scholar
  12. 12.
    Manzini, G.: Characterization of sensitive linear cellular automata with respect to the counting distance. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 825–833. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Martin, B.: Damage spreading and μ-sensitivity in cellular automata. Ergodic theory & dynammical systems (2002) (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • F. Blanchard
    • 1
  • J. Cervelle
    • 2
  • E. Formenti
    • 3
  1. 1.Institut de Mathématique de LuminyCNRSMarseille Cedex 9France
  2. 2.Laboratoire d’informatique Institut Gaspard-MongeMarne-la-Vallée Cedex 2France
  3. 3.Laboratoire d’Informatique Fondamentale de Marseille (LIF)Marseille Cedex 13France

Personalised recommendations