Advertisement

Faster Algorithms for k-Medians in Trees

  • Robert Benkoczi
  • Binay Bhattacharya
  • Marek Chrobak
  • Lawrence L. Larmore
  • Wojciech Rytter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)

Abstract

In the k-median problem we are given a connected graph with non-negative weights associated with the nodes and lengths associated with the edges. The task is to compute locations of k facilities in order to minimize the sum of the weighted distances between each node and its closest facility. In this paper we consider the case when the graph is a tree. We show that this problem can be solved in time \(O(n {\mbox{\rm polylog}} (n))\) for the following cases: (i) directed trees (and any fixed k), (ii) balanced undirected trees, and (iii) undirected trees with k=3.

Keywords

Cost Function Recurrence Equation Directed Tree Facility Location Problem Operation Research Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, S., Raghavan, P., Rao, S.: Approximation schemes for euclidean k-medians and related problems. In: Proc. 30th Annual ACM Symposium on Theory of Computing (STOC 1998), pp. 106–113 (1998)Google Scholar
  2. 2.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Mungala, K., Pandit, V.: Local seach heuristic for k-median and facility location problems. In: Proc. 16th Annual ACOM Symposium on Computing, pp. 21–29 (2001)Google Scholar
  3. 3.
    Auletta, V., Parente, D., Persiano, G.: Dynamic and static algorithms for optimal placement of resources in a tree. Theoretical Computer Science 165, 441–461 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Auletta, V., Parente, D., Persiano, G.: Placing resources on a growing line. Journal of Algorithms 26, 87–100 (1998)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Benkoczi, R.R., Bhattacharya, B.K.: Spine tree decomposition. Technical Report CMPT1999-09, School of Computing Science, Simon Fraser University, Canada (1999) Google Scholar
  6. 6.
    Charikar, M., Guha, S.: Improved combinatorial algorithms for facility location and k-median problems. In: Proc. 40th Symposium on Foundations of Computer Science (FOCS 1999), pp. 378–388 (1999)Google Scholar
  7. 7.
    Charikar, M., Guha, S., Tardos, E., Shmoys, D.: A constant-factor approximation algorithm for the k-median problem. In: Proc. 31st Annual ACM Symposium on Theory of Computing (STOC 1999), pp. 1–10 (1999)Google Scholar
  8. 8.
    Chrobak, M., Larmore, L., Rytter, W.: The k-median problem for directed trees. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 136, pp. 260–271. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-completeness. W.H. Freeman and Co., New York (1979)zbMATHGoogle Scholar
  10. 10.
    Gavish, R., Sridhar, S.: Computing the 2-median on tree networks in \(O(n \ {\log} \ n)\) time. Networks 26, 305–317 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hassin, R., Tamir, A.: Improved complexity bounds for location problems on the real line. Operation Research Letters 10, 395–402 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hsu, W.L.: The distance-domination numbers of trees. Operation Research Letters 1, 96–100 (1982)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems II: The p-medians. SIAM Journal on Applied Mathematics 37, 539–560 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a local search heuristic for facility location problems. Journal of Algorithms 37, 146–188 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Li, B., Deng, X., Golin, M., Sohraby, K.: On the optimal placement of web proxies on the internet: linear topology. In: Proc. 8th IFIP Conference on High Peformance Netwworking (HPN 1998), pp. 485–495 (1998)Google Scholar
  16. 16.
    Li, B., Golin, M.J., Italiano, G.F., Deng, X., Sohraby, K.: On the optimal placement of web proxies in the internet. In: IEEE InfoComm 1999, pp. 1282–1290 (1999)Google Scholar
  17. 17.
    Shah, R., Farach-Colton, M.: Undiscretized dynamic programming: faster algorithms for facility location and related problems on trees. In: Proc. 13th Annual Symposium on Discrete Algorithms (SODA), pp. 108–115 (2002)Google Scholar
  18. 18.
    Shah, R., Langerman, S., Lodha, S.: Algorithms for efficient filtering in contentbased multicast. In: Proc. 9th Annual European Symposium on Algorithms (ESA), pp. 428–439 (2001)Google Scholar
  19. 19.
    Tamir, A.: An O(pn 2) algorithm for the p-median and related problems on tree graphs. Operations Research Letters 19, 59–64 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Vigneron, A., Gao, L., Golin, M., Italiano, G., Li, B.: An algorithm for finding a k-median in a directed tree. Information Processing Letters 74, 81–88 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Woeginger, G.: Monge strikes again: optimal placement of web proxies in the internet. Operations Research Letters 27, 93–96 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Robert Benkoczi
    • 1
  • Binay Bhattacharya
    • 1
  • Marek Chrobak
    • 2
  • Lawrence L. Larmore
    • 3
  • Wojciech Rytter
    • 4
    • 5
  1. 1.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  2. 2.Department of Computer ScienceUniversity of CaliforniaRiversideUSA
  3. 3.Department of Computer ScienceUniversity of NevadaLas VegasUSA
  4. 4.Instytut InformatykiUniwersytet WarszawskiWarszawaPoland
  5. 5.Department of Computer Science, and New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations