Inferring Strings from Graphs and Arrays

  • Hideo Bannai
  • Shunsuke Inenaga
  • Ayumi Shinohara
  • Masayuki Takeda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2747)


This paper introduces a new problem of inferring strings from graphs, and inferring strings from arrays. Given a graph G or an array A, we infer a string that suits the graph, or the array, under some condition. Firstly, we solve the problem of finding a string w such that the directed acyclic subsequence graph (DASG) of w is isomorphic to a given graph G. Secondly, we consider directed acyclic word graphs (DAWGs) in terms of string inference. Finally, we consider the problem of finding a string w of a minimal size alphabet, such that the suffix array (SA) of w is identical to a given permutation p=p 1,...,p n of integers 1,...,n. Each of our three algorithms solving the above problems runs in linear time with respect to the input size.


Linear Time Directed Acyclic Graph Sink Node Longe Path Lexicographic Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific, Singapore (2002)CrossRefGoogle Scholar
  2. 2.
    Baeza-Yates, R.A.: Searching subsequences (note). Theoretical Computer Science 78, 363–376 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.: The smallest automaton recognizing the subwords of a text. Theoretical Computer Science 40, 31–55 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Franěk, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Verifying a border array in linear time. J. Comb. Math. Comb. Comput., 223–236 (2002)Google Scholar
  5. 5.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer algorithms. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
  6. 6.
    Duval, J.P., Lecroq, T., Lefevre, A.: Border array on bounded alphabet. In: Proc. The Prague Stringology Conference 2002 (PSC 2002), pp. 28–35. Czech Technical University (2002)Google Scholar
  7. 7.
    Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches. SIAM J. Compt. 22, 935–948 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Atallah, M.J. (ed.): Algorithms and Theory of Computation Handbook. CRC Press, Boca Raton (1998) ISBN:0-8493-2649-4zbMATHGoogle Scholar
  9. 9.
    Crochemore, M.: Transducers and repetitions. Theoretical Computer Science 45, 63–86 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison Wesley, Reading (1994)zbMATHGoogle Scholar
  11. 11.
    Allauzen, C., Crochemore, M., Raffinot, M.: Factor oracle: A new structure for pattern matching. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 291–306. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th Annual Symposium on Switching and Automata Theory, pp. 1–11 (1973)Google Scholar
  13. 13.
    Blumer, A., Blumer, J., Haussler, D., McConnell, R., Ehrenfeucht, A.: Complete inverted files for efficient text retrieval and analysis. Journal of the ACM 34, 578–595 (1987)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hideo Bannai
    • 1
  • Shunsuke Inenaga
    • 2
  • Ayumi Shinohara
    • 2
    • 3
  • Masayuki Takeda
    • 2
    • 3
  1. 1.Human Genome Center, Institute of Medical ScienceUniversity of TokyoMinato-ku, TokyoJapan
  2. 2.Department of InformaticsFukuokaJapan
  3. 3.PRESTOJapan Science and Technology Corporation (JST) 

Personalised recommendations