Adaptive Methods to Improve Self-localization in Robot Soccer

  • Ingo Dahm
  • Jens Ziegler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2752)


This paper shows adaptive strategies to improve the reliability and performance of self-localization in robot soccer with legged robots. Adaptiveness is the common feature of the presented algorithms and has proved essential to enhance the quality of localization by a new classification technique, essential to increase the confidence level of internal information about the environment by extracting reliability information and by communicating them via parameterizable acoustic communication, and essential to circumvent manual implementations of walking patterns by evolving them automatically.


Genetic Program Code Rate Adaptive Method Parity Check Convolutional Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, J.A.: An Introduction to Neural Networks. MIT Press, Boston (1995) ISBN 0-262-01144-1 Google Scholar
  2. 2.
    Angeline, P.J.: Genetic programming and emergent intelligence. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, ch. 4, pp. 75–98. MIT Press, Cambridge (1994)Google Scholar
  3. 3.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, San Francisco (1998)zbMATHGoogle Scholar
  4. 4.
    Larry Bretthorst, G.: An introduction to model selection using probability theory as logic. Maximum Entropy and Bayesian Methods (1993)Google Scholar
  5. 5.
    Oren Brigham, E.: The Fast Fourier Transform and Its Applications, 1st edn. Prentice Hall, Englewood Cliffs (October 1997)Google Scholar
  6. 6.
    Bruce, J., Balch, T., Veloso, M.M.: Fast and inexpensive color image segmentation for interactive robots. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), vol. 3, pp. 2061–2066 (October 2000)Google Scholar
  7. 7.
    Busch, J., Ziegler, J., Aue, C., Ross, A., Sawitzki, D., Banzhaf, W.: Automatic generation of control programs for walking robots using genetic programming. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 258–268. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Berrou, C., Glavieux, A., Thitimajshima, P.: Near shannon limit error correcting coding and decoding: Turbo-codes (1). In: International Conference on on Communications, Geneva, Switzerland, pp. 1064–1070 (1993)Google Scholar
  9. 9.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Mathematics of Computation 19(90), 297–301 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cruse, H.: Coordination of leg movement in walking animals. In: Meyer, J.-A., Wilson, S.W. (eds.) From animals to animats. Intl. Conf. on Simulation of Adaptive Behavior, pp. 105–119. MIT Press, Cambridge (1991)Google Scholar
  11. 11.
    Deb, K.: Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Technical Report of the Collaborative Research Center 531 Computational Intelligence CI–49/98, University of Dortmund (October 1998) Google Scholar
  12. 12.
    Dittrich, P., Bürgel, A., Banzhaf, W.: Learning to control a robot with random morphology. In: Husbands, P., Meyer, J.-A. (eds.) Proceedings First European Workshop on Evolutionary Robotics, pp. 165–178. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Stromberg, G.: Signal Space Detection with Application to Magnetic Recording. PhD thesis, University of Dortmund (September 2000) Google Scholar
  14. 14.
    Stromberg, G., Hassner, M., Schwiegelshohn, U.: Signal Space Detection in Colored Noise. IEEE Transactions on Magnetics 36(3), 604–612 (May 2000)CrossRefGoogle Scholar
  15. 15.
    Hagenauer, J., Offer, E., Papke, L.: Iterative decoding of binary block and convolutional codes. IT-42, 429–445 (March 1996)Google Scholar
  16. 16.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Company Inc., (1994) ISBN 0-02-352761-7Google Scholar
  17. 17.
    Hornby, G.S., Fujita, M., Takamura, S., Yamamoto, T., Hanagata, O.: Autonomous evolution of gaits with the sony quadruped robot. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, 13-17, vol. 2, pp. 1297–1304. Morgan Kaufmann, San Francisco (1999)Google Scholar
  18. 18.
    Reed, I.S., Solomon, G.: Polynomial Codes over certain Finite Fields. J Soc. Indust. Appl. Math. 8(2) (June 1960)Google Scholar
  19. 19.
    Kleiner, K.: Look to the insect. New Scientist 144(1951), 27–29 (1994)Google Scholar
  20. 20.
    Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  21. 21.
    Lewis, M.A., Fagg, A.H., Solidum, A.: Genetic programming approach to the construction of a neural network control of a walking robot. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pp. 2618–2623, Nice, France (1992) Electronica Bks. Google Scholar
  22. 22.
    Olmer, M., Banzhaf, W., Nordin, P.: Evolving real-time behavior modules for a real robot with genetic programming. In: Jamshidi, M., Pin, F., Dauchez, P. (eds.) Proceedings of the International Symposium on Robotics and Manufacturing (ISRAM 1996) Robotics and Manufacturing, pp. 675–680. Asme Press, New York (1996)Google Scholar
  23. 23.
    Quek, F.: An algorithm for the rapid computation of boundaries of run-length encoded regions. Pattern Recognition Journal 33, 1637–1649 (2000)CrossRefGoogle Scholar
  24. 24.
    Schmermbeck, S., Stromberg, G.: Soft-output signal space detectors (S3D). Technical Report 0102, Computer Engineering Institute (CEI), University of Dortmund (2002) Google Scholar
  25. 25.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error–Correcting Codes. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  26. 26.
    SONY. Sony Four Legged Robot Football League Rule Book, 2nd edn. SONY (2000)Google Scholar
  27. 27.
    Spencer, G.F.: Automatic generation of programs for crawling and walking. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, ch. 15, pp. 335–353. MIT Press, Cambridge (1994)Google Scholar
  28. 28.
    Jeon, T., Moon, J.: A Systematic Approach to Signal Space Detection. IEEE Transactions on Magnetics 33(5), 2737–2739 (1997)CrossRefGoogle Scholar
  29. 29.
    Veloso, M., Uther, W., Fujita, M., Asada, M., Kitano, H.: Playing soccer with legged robots. In: Intl. Conference on Intelligent Robots and Systems. IEEE/RSJ, pp. 437–442 (October 1998)Google Scholar
  30. 30.
    Blanz, W., Cox, C.E., Fettweis, G., Hassner, M., Schwiegelshohn, U.: A Key Equation Solver for variable Block Reed-Solomon Decoders. IBM Technical Bulletin (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ingo Dahm
    • 1
  • Jens Ziegler
    • 2
  1. 1.Computer Engineering InstituteUniversity of DortmundDortmundGermany
  2. 2.Dept. of Computer ScienceUniversity of DortmundDortmundGermany

Personalised recommendations