Skip to main content

Minimizing Interference in Cellular Mobile Communications by Optimal Channel Assignment Using Chaotic Simulated Annealing

  • Chapter
Soft Computing in Communications

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 136))

Abstract

Abstract. In this chapter, we deal with the problem of assigning frequency channels to radio cells in a cellular mobile network so that interference between channels is minimized, while demands for channels are satisfied. We solve the channel assignment problem (CAP) using chaotic simulated annealing (CSA) proposed by Chen and Aihara recently. Simulations show that our results are better than existing results found by other algorithms in several benchmarking CAPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gamst, A., Rave, W. (1982) On frequency assignment in mobile automatic telephone systems. Proc. GLOBECOM’82, 309–315

    Google Scholar 

  2. Kunz, D. (1991) Channel assignment for cellular radio using neural networks. IEEE Trans. Veh. Technol., 40, 188–193

    Article  MathSciNet  Google Scholar 

  3. Sivarajan, K. N., McEliece, R. J., Ketchum, J.W. (1989) Channel assignment in cellular radio. Proc. 39th IEEE Veh. Technol. Soc. Conf., 846–850

    Google Scholar 

  4. Gamst, A. (1986) Some lower bounds for a class of frequency assignment problems. IEEE Trans. Veh. Tech., VT-35, 8–14

    Article  Google Scholar 

  5. Hale, W. K. (1980) Frequency assignment: theory and application. Pro. IEEE, 68, 1497–1514

    Article  Google Scholar 

  6. Duque-Anton, M., Kunz, D., Ruber, B. (1993) Channel assignment for cellular radio using simulated annealing. IEEE Trans. Veh. Technol., 42, 14–21

    Article  Google Scholar 

  7. Aihara, K., Takabe, T., Toyoda, M. (1990) Chaotic neural networks. Physics Letters A, 144, 333–340

    Article  MathSciNet  Google Scholar 

  8. Smith, K., Palaniswami, M. (1997) Static and dynamic channel assignment using neural network. IEEE Journal on Selected Areas in Communications, 15, 238–249

    Article  Google Scholar 

  9. Funabiki, N., Takefuji, Y. (1992) A neural network parallel algorithm for channel assignment problems in cellular radio networks. IEEE Trans. Veh. Technol., 41, 430–437

    Article  Google Scholar 

  10. Chan, P., Palaniswami, M., Everitt, D. (1994) Neural network-based dynamic channel assignment for cellular mobile communication systems. IEEE Trans. Veh. Technol., 43, 279–288

    Article  Google Scholar 

  11. Kim, J., Park, S. H., Dowdy, P. W., Nasrabadi, N. M. (1997) Cellular radio channel assignment using a modified Hopfield network. IEEE Trans. Veh. Techno!., 46, 957 – 967

    Article  Google Scholar 

  12. Chen L., Aihara, K. (1995) Chaotic simulated annealing by a neural network model with transient chaos. Neural Networks, 8, 915–930

    Article  Google Scholar 

  13. Chen L., Aihara, K. (1994) Transient chaotic neural networks and chaotic simulated annealing. in M. Yamguti(ed.), Towards the Harnessing of Chaos. Amsterdam, Elsevier Science Publishers B.V., 347–352

    Google Scholar 

  14. Chen L., Aihara, K. (1999) Global searching ability of chaotic neural networks. IEEE Trans. Circuits and Systems-I: Fundamental Theory and Applications, 46, 974–993

    Article  MathSciNet  MATH  Google Scholar 

  15. Nozawa, H. (1992) A neural network model as a globally coupled map and applications based on chaos. Chaos, 2, 377–386

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, L., Tian, F. (2000) Noisy chaotic neural networks for solving combinatorial optimization problems. Proc. International Joint Conference on Neural Networks (IJCNN 2000, Como. Italy. July 24–27. 2000.) 4, 37 – 40

    Google Scholar 

  17. Wang, L., Tian, F., Fu, X. (2000) Solving channel assignment problems for cellular radio networks using transiently chaotic neural networks. Proc. International Conference on Automation, Robotics, and Computer Vision. (ICARCV 2000, Singapore)

    Google Scholar 

  18. Wang, L. (1996) Oscillatory and chaotic dynamics in neural networks under varying operating conditions. IEEE Transactions on Neural Networks, 7, 1382–1388

    Article  Google Scholar 

  19. Wang, L. K. Smith (1998) On chaotic simulated annealing. IEEE Transactions on Neural Networks, 9, 716–718

    Article  Google Scholar 

  20. Wang, L., Smith, K. (1998) Chaos in the discretized analog Hopfield neural network and potential applications to optimization. Proc. International Joint Conference on Neural Networks, 2, 1679–1684

    Google Scholar 

  21. Kwok, T., Smith, K., Wang, L. (1998) Solving combinatorial optimization problems by chaotic neural networks. C. Dagli et al.(eds), Intelligent Engineering Systems through Artificial Neural Networks, 8, 317–322

    Google Scholar 

  22. Kwok, T., Smith, K., Wang, L. (1998) Incorporating chaos into the Hopfield neural network for combinatorial optimization. Proc. 1998 World Multiconference on Systemics, Cybernetics and Informatics, N. Callaos, O. Omolayole, and L. Wang, (eds.) 1, 646–651

    Google Scholar 

  23. Kohonen, T. (1982) Self-organized formation of topologically correct feature maps. Biol. Cybern., 43, 59–69

    Article  MathSciNet  MATH  Google Scholar 

  24. Hopfiled, J.J. (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA, 81, 3088–3092

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, L., Li, S., Wan, C., Soong, B.H. (2004). Minimizing Interference in Cellular Mobile Communications by Optimal Channel Assignment Using Chaotic Simulated Annealing. In: Soft Computing in Communications. Studies in Fuzziness and Soft Computing, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45090-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45090-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53623-6

  • Online ISBN: 978-3-540-45090-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics