Skip to main content

Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information

  • Conference paper
Information Processing in Medical Imaging (IPMI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2732))

Abstract

A methodology is presented for estimation of a probability density function of cerebral fibre orientations when one or two fibres are present in a voxel. All data are acquired on a clinical MR scanner, using widely available acquisition techniques. The method models measurements of water diffusion in a single fibre by a Gaussian density function and in multiple fibres by a mixture of Gaussian densities. The effects of noise on complex MR diffusion weighted data are explicitly simluated and parameterised. This information is used for standard and Monte Carlo streamline methods. Deterministic and probabilistic maps of anatomical voxel scale connectivity between brain regions are generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, A.L., Hasan, K.M., Mariana, L., Tsuruda, J.S., Parker, D.L.: Analysis of partial volume effects in diffusion-tensor MRI. Magn. Reson. Med. 45, 770–780 (2001)

    Article  Google Scholar 

  2. Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and modelling of non- Gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48, 331–340 (2002)

    Article  Google Scholar 

  3. Behrens, T.E.J., Jenkinson, M., Brady, J.M., Smith, S.M.: A probabilistic framework for estimating neural connectivity from diffusion weighted MRI. Proc. Int. Soc. Magn. Reson. Med, 1142 (2002)

    Google Scholar 

  4. Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proc. Nat. Acad. Sci. USA 96, 10422–10427 (1999)

    Article  Google Scholar 

  5. Frank, L.R.: Characterization of anisotropy in high angular resolution diffusionweighted MRI. Magn. Reson. Med. 47, 1083–1099 (2002)

    Article  Google Scholar 

  6. Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42, 515–525 (1999)

    Article  Google Scholar 

  7. Jones, D.K.: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn. Reson Med. 49, 7–12 (2003)

    Article  Google Scholar 

  8. Koch, M.A., Norris, D.G., Hund-Georgiadis, M.: An investigation of functional and anatomical connectivity using magnetic resonance imaging. NeuroImage 16, 241–250 (2002)

    Article  Google Scholar 

  9. Lazar, M., Alexander, A.L.: White matter tractography using random vector (RAVE) perturbation. In: Proc. Int. Soc. Magn. Reson. Med., p. 539 (2002)

    Google Scholar 

  10. Parker, G.J.M., Barker, G.J., Buckley, D.L.: A probabilistic index of connectivity (PICo) determined using a Monte Carlo approach to streamlines. In: ISMRM Workshop on Diffusion MRI (Biophysical Issues), Saint-Malo, France, pp. 245–255 (2002)

    Google Scholar 

  11. Parker, G.J.M., Barker, G.J., Thacker, N.A., Jackson, A.: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of anisotropic diffusion. In: Proc. Int. Soc. Magn. Reson. Med., p. 1165 (2002)

    Google Scholar 

  12. Pierpaoli, C., Basser, P.J.: Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906 (1996)

    Article  Google Scholar 

  13. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965)

    Article  Google Scholar 

  14. Symms, M.R., Barker, G.J., Franconi, F., Clark, C.A.: Correction of eddy-current distortions in diffusion-weighted echo-planar images with a two-dimensional registration technique. In: Proc. Int. Soc. Magn. Reson. Med., p. 1723 (1997)

    Google Scholar 

  15. Tuch, D.S., Wiegell, M.R., Reese, T.G., Belliveau, J.W., Weeden, V.J.: Measuring cortico-cortical connectivity matrices with diffusion spectrum imaging. In: Proc. Int. Soc. Magn. Reson. Med., p. 502 (2001)

    Google Scholar 

  16. Wheeler-Kingshott, C.A.M., Boulby, P.A., Symms, M.R., Barker, G.J.: Optimised cardiac gating for high angular-resolution whole-brain DTI on a standard scanner. In: Proc. Int. Soc. Magn. Reson. Med., p. 1118 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parker, G.J.M., Alexander, D.C. (2003). Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45087-0_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40560-3

  • Online ISBN: 978-3-540-45087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics