Persistent Angular Structure: New Insights from Diffusion MRI Data. Dummy Version

  • Kalvis M. Jansons
  • Daniel C. Alexander
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2732)


We determine a statistic called the radially Persistent Angular Structure (PAS) from samples of the Fourier transform of a three-dimensional function. The method has applications in diffusion magnetic resonance imaging (MRI), which samples the Fourier transform of the probability density function of particle displacements. The persistent angular structure is then a representation of the relative mobility of particles in each direction. In combination, PAS-MRI computes the persistent angular structure at each voxel of an image. This technique has biomedical applications, where it reveals the orientations of microstructural fibres, such as white-matter fibres in the brain.

We test PAS-MRI on synthetic and human brain data. The data come from a standard acquisition scheme for diffusion-tensor MRI in which the samples in each voxel lie on a sphere in Fourier space.


Magnetic Resonance Imaging Probability Density Function Fractional Anisotropy Principal Direction Magnetic Resonance Imaging Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basser, P.J., Matiello, J., Le Bihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66, 259–267 (1994)CrossRefGoogle Scholar
  2. 2.
    Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. Journal of Magnetic Resonance Series B 111, 209–219 (1996)CrossRefGoogle Scholar
  3. 3.
    Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G.: Diffusion tensor imaging of the human brain. Radiology 201, 637–648 (1996)Google Scholar
  4. 4.
    2003 Persistent angular structure: new insights from diffusion MRI data. Inverse Problems (submitted)Google Scholar
  5. 5.
    Stejskal, E.O., Tanner, T.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. The Journal of Chemical Physics 42, 288–292 (1965)CrossRefGoogle Scholar
  6. 6.
    Callaghan, P.T.: Principles of Magnetic Resonance Microscopy. Oxford Science Publications, Oxford (1991)Google Scholar
  7. 7.
    Mitra, P.P., Halperin, B.I.: Effects of finite gradient-pulse widths in pulsedfield-gradient diffusion measurement. Journal of Magnetic Resonance 113, 94–101 (1995)Google Scholar
  8. 8.
    Wedeen, V.J., Reese, T.G., Tuch, D.S., Dou, J.-G., Weiskoff, R.M., Chessler, D.: Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI. In: Proc. 7th Annual Meeting of the ISMRM, Philadelphia, Berkeley, USA, p. 321 (2000)Google Scholar
  9. 9.
    Crank, J.: Mathematics of diffusion. Oxford University Press, Oxford (1975)Google Scholar
  10. 10.
    Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magnetic Resonance in Medicine 42, 515–525 (1999)CrossRefGoogle Scholar
  11. 11.
    Hasan, K.M., Parker, D.L., Alexander, A.L.: Comparison of gradient encoding schemes for diffusion-tensor MRI. Journal of Magnetic Resonance Imaging 13, 769–780 (2001)CrossRefGoogle Scholar
  12. 12.
    Frank, L.R.: Characterization of anisotropy in high angular resolution diffusionweighted MRI. Magnetic Resonance in Medicine 47, 1083–1099 (2002)CrossRefGoogle Scholar
  13. 13.
    Alexander, A.L., Hasan, K.M., Lazar, M., Tsuruda, J.S., Parker, D.L.: Analysis of partial volume effects in diffusion-tensor MRI. Magnetic Resonance in Medicine 45, 770–780 (2001)CrossRefGoogle Scholar
  14. 14.
    Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magnetic Resonance in Medicine 48, 331–340 (2002)CrossRefGoogle Scholar
  15. 15.
    Le Bihan, D.: Molecular diffusion, tissue microdynamics and microstructure. NMR in Biomedicine 8, 375–386 (1995)CrossRefGoogle Scholar
  16. 16.
    Skilling, J., Gull, S.F.: Algorithms and applications. In: Smith, C.R., Grandy, W.T. (eds.) Maximum Entropy and Bayesian methods in Inverse Problems, pp. 83–132. Reidel publishing company, Dordrecht (1985)Google Scholar
  17. 17.
    Press, W.H., Teukolsky, S.A., Vettering, W.T., Flannery, B.P.: Numerical Recipes in C. Press Syndicate of the University of Cambridge, New York (1988)zbMATHGoogle Scholar
  18. 18.
    Barker, G.J., Wheeler-Kingshott, C.: Personal CommunicationGoogle Scholar
  19. 19.
    Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R., Mazziotta, J.C.: Automated image registration: I general methods and intra-subject intra-modality validation. Journal of Computer Assisted Tomography 22, 141–154 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Kalvis M. Jansons
    • 1
  • Daniel C. Alexander
    • 2
  1. 1.Department of MathematicsUniversity College LondonLondonUK
  2. 2.Department of Computer ScienceUniversity College LondonLondonUK

Personalised recommendations